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Types of Filters 
 
We saw three types of filters, viz. MA, AR, and ARMA. These do not include the entire class of 
filters but cover an important class of filters and are very useful. 
 For linear systems where output y(n) is related to the input x(n) by the difference 
equation: 
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We considered three cases: 

1. Moving Average Filters (MA) 
 
In this case, the linear filter, 
 
is an all-zero filter and the difference equation for  
their input-output relationship is 
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Note: The strength of these filters may not be 1 
 
 
 
 

2. Autoregressive Filters (AR) 
 

In this case, the linear filter, 
 
is an all-zero filter and the difference equation for  
their input-output relationship is 
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AR Filters are linear shift invariant systems 
 
Refer to previous AR filter figure. 
 
Using the figure we can calculate the expressions for y0, y1… 
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This can be seen as 
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By looking at the difference equation of AR filters we observe that yk is described in terms of 
k and does not refer to any particular value of y or x. Hence we can say that AR filters are 
shift invariant 
 
To show that AR is linear, we have to show that 
 
 
 
 
 
 
 
 
 
 
Let us superimpose the blue and red AR systems as in the figure below and finally add up the 
two results in Σ2. We can look at the AR system as containing the summation element Σ1, the 
delay elements z-1 and the multiplying elements gk.  
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Let us denote, for convenience, Σ2 as a black filled circle. 
 
Add (Σ2) before the addition (Σ1) or after, it doesn’ t make a difference… 
 
 
 
 
 
 
 
 
 
 
Add (Σ2) before the multiplication (gk) or after, it doesn’ t make a difference… 
 
 
 
 
 
 
 
 
 
 
Now, for each of the three Σ2 we have the following: 
Next three figures for the Σ2 before g2  
Among the next three, the 2nd and 3rd for the Σ2 before g1 
Among the next three, the 3rd for the Σ2 before g0 
At each step we combine the Σ2‘s between the delay elements 
 
Add (Σ2) before the delay (z-1) or after, it doesn’ t make a difference… 
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Add (Σ1) before the addition (Σ2) or after, it doesn’ t make a difference… 
 
 
 
 
 
 
 
 
 
 
 
 
 
Another way of showing AR filters as linear is by induction. 
y0 = x0 forms the basis of the induction hypothesis 
Let us assume yk-1, yk-2,… to be linear 
yk is defined in terms of xk and yk-1, yk-2,… in the AR filter difference equation. 
Since xk is just added and the y terms are multiplied by constants, we can say that yk is also 
linear. 
Hence AR filters are linear systems. 
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3. Autoregressive, Moving Average Filters (ARMA) 
 
In this case, the linear filter, 
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is an pole-zero filter which has both finite poles and zeroes. 
 
ARMA filters are basically cascaded MA and AR filters.  
 
There are 2 typesi of ARMA filters: 
 
Type 1 (MA →→→→ AR)     Type 2 (AR →→→→ MA) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Type 2 filters have an advantage over Type 1 in that only one set of latches is required for their 
implementation. 
 
When constructing an ARMA filter, the AR filter may be unstable. As long as the poles of the 
AR filter match the zeros of the MA filter, the resulting ARMA filter is stable. However, 
sometimes we may not be able to match the poles and the zeros perfectly. Some of the reasons 
are: 

1. On computers, due to precision / truncation errors 
2. Incapability of specifying the physical media (plant errors) 
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Given two vectors y and x, if we wanted to fit them together we would scale one of them by a 
scalar a. Using mathematical symbols we would write it as: 
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This is a minimization problem where a has to be varied to minimize f 
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f(a) is a parabola which can have a minimum only if the coefficient of the second degree term is 
greater than zero viz. xTx. This is true for an upward facing parabola as this term dominates every 
other terms. 
 
For a parabola ax2+bx+c the minima is at –b/2a. This is obvious because the intersections with 
the x-axis are at –b/a and b/a and the parabola is symmetricii. 
 
Deconvolution Revisited 
 
As we have seen before an LTI system can be represented as 

 

AXY =  
 
Further, deconvolution is the process of finding the kernel/input given the output and the 
input/kernel. Hence we can view deconvolution as matrix inversion where in we need to find X 
given Y and A by finding A-1 and pre-multiplying the above equation. 
 
A generalization of the above problem can be stated as  
 
In most practical situations, X does not span the space of Y and hence there is no exact solution to 
the above equation. Thus we formulate the minimization problem as: 
 
Given Y and A, we have to get X such that 
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This problem is very similar to the problem we encountered earlier. Y, A and X in the 
above equation correspond to y, x, and a in the earlier problem. There a was a scalar here X is a 
vector. We can see this as multiplying each multiplying each column of A (a vector) with each 
row of X (a scalar).  

Thus it may seem that we have reduced this problem into multiple instances of the 
previous problem. However, this is not so because the columns of A do not form an orthogonal 
basis. 
 
 The problem can be seen when we consider the following figure in which Y is a vector in 
the plane of a1 and a2 (A spans Y). Let us try and adopt the method of the previous problem here. 
We project Y onto a1 and project whatever is remaining onto a2. We see that we are still left with 
some amount of Y and we have to repeat the same procedure again (and again…). Although this 
procedure converges, it takes a lot of time. 
 The figure below shows the first few steps in the projection and re-projection of Y along  
a1 and a2 
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Least Square Matrix Inversion 
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We write the above equation as 
 
f(X) = XTPX + QTX + R 
 
where  P = ATA 
 Q = -2ATY 
 R = YTY 
 
f(X) is a field representing an n-dimensional paraboloidiii. 
 
The above equation will have a minima only if x∀  XTPX > 0 
P is the positive definite, written as 0	P  
 
The above equation using summations: 
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We take the partial derivative with respect to xi in order to minimize f(X) 
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The minima of f(X) can be found by solving 0
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This is very similar to the solution –b/2a if we put Q as b and P as a (Assuming P is symmetric 
which it is in most practical cases). 
 
Substituting for P and Q 
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X=A�Y 
 
A��= (ATA)-1 is called the pseudo inverseiv. 
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In the above equation AT is the projection matrix. It projects Y onto the basis vectors of A. 
Finally (ATA)-1 converts the projections into linear combinandsv. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the above figure, the red vectors are the basis, the blue vectors are the projections of Y and the 
green vectors are the linear combinands. 
 
 
 
Let us review what we have done. Given the vectors Y and transformation we had to find X such 
that Y - AX was minimum. Usually Y has far more components than X. We have to tweak only a 
few parameters of the input vector X. For example, 
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Here X is a 2-dimensional vector and Y is a 4-dimensional vector. A converts X from its 

coordinate system into the coordinate system of Y, thus making Y and AX comparable. AX is the 
linear combination of the bases of A weighted by the components of X. AX still lies in its plane of 
X while Y is outside that plane. Hence we cannot directly equate them. Instead we drop 
perpendiculars to the space of A and equate them. Dropping perpendiculars is done by pre-
multiplying them with AT 

 
Hence,  AT AX = AT Y 
 
And  X = (ATA)-1 AT Y 
 

Note that this looks very similar to 
xx
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=  which we had found earlier. 
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Udayan’s comments and corrections – 
i Because of commutativity, type I and type II systems are equivalent. Thus, these are not two types of ARMA 
filters. Rather they are two ways of implementing them. 
ii The parabola we are talking about is completely positive, and has no roots. But the ab 2/−  formula holds for 
complex-root parabolas just like it does for real root parabolas. 
iii “Quadratic surface”  
iv A��= (ATA)-1AT 
v “Combinants” !! 


