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Why do we need Auto Regressive Systems? 

    If the system plant is recursive e.g. standing wave echo. 
    Moving Average requires more latches 
    You need many coefficients for FIR 
    You can use it in integrator, differentiator and shock absorber 
 
 
Modeling AR systems: 
 

1. Model the inverse of the AR system as MA 
We know that if the coefficients of the Moving Average system are 1, f1,f2 and f3 , the 
coefficients of the (inverse) AR system are 1, -f1,-f2 and -f3 respectively. 
 
 
 
 

 
 
 
 
 
 



 
 
 
 
 
2. Direct AR modeling 
We know the equation of the AR filter. 
 
y0 = cx0 + b1y-1 + b2y-2 + b3y-3 ……. 
 

Now since we start with zeroes, we can write the AR filter in matrix form 
as follows: 
 
�0    0    0    x0    �  �b1�          �y0� 

�y0   0    0    x1   �  �b2�   =    �y1� 
�y0   y1   0    x2  �  �b3�          �y2� 

�y0   y1   y2   x3   �  �c  �          �y3� 
 
 

 



 
 
 

This method gives the same answer as the inverse. But the inverse method is 
easier. 
Direct AR is good if we have c=0. (c=0 indicates that the system does not depend 
on any input) 
 
Note: The matrix that we observe in the direct AR modeling is not the Toeplitz 
matrix, as it is not the shift in shift out x thing. 
 

ATA: 
Some stuff about ATA. 
It is the dot product of the bases and is the skinny matrix whose size is the order of the 
system. 
 
AT has the bases on the rows and A on the columns. 
 
 

 
 
If AT is orthogonal then ATA is diagonal. Impulse is an example of orthogonal bases. 



ATA is the auto correlation of the original matrix and it is a square, symmetric matrix and 
the dot product of the bases. 

Its dimension = no. of coefficients of the system. 
 
Advantage of orthogonal bases. 
If the bases are not orthogonal, then adding a base changes how the previous filter is 
used. 
 
If there is only one base, so the red line shows how the filter is used 

 
 
Now the new base is not orthogonal, we wont know how to add the previous filter, its not 
equal to the one base case. 
 
 

 
But in case of orthogonal bases there is no change in how the previous filter is used. 
 

 



ARMA system identification: 
There are two cases in this depending on the input. 
If you can control the system input then we have three approximation techniques as 
follows: 
 

1. Pade Approximation Technique 
 

 

 
In this technique we give an impulse as input. Assume that it has p poles and q zeroes. 

1. Since the input is finite, we know that the middle line will have all zeroes after the 
‘q’ . 

2. And you know the p+q output after this middle input is given to the AR (the 
impulse response) 

3. With this information (p+q output and q followed by 0 input) you can find out the 
coefficients of the AR filter. 

4. Get the inverse of it, and then get the MA coefficients. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2. Prony’s Approximation Technique: 
 

 

 
 
In this you use the funda of all zeroes after q and Least Squares. 
So consider lots of zeroes in the input and you get some huge output(for the AR filter). 
Apply Least Squares and you can get the AR coefficients. Continue as above for MA. 
 
 

3. Shanks’  Technique: 
Use the first part of  Prony or Pade and get the AR coefficients. Now we are going to 
consider the equivalent MAAR 

 

 



You have the impulse response of the AR system i.e the MA input. And given and 
impulse you know the system output. Use these to get the MA coefficients. 
 
 
ARMA as a large MA 
If you can’ t control the system input i.e cannot give an impulse then there is another 
technique 
Model the ARMA as a large MA system. Give input in the order of millions, which will 
get you huge output. Now Least Squares using information will give you a nice 
approximation of the Impulse Response of the system. 
In all the Prony, Pade and Shanks we first found the impulse response, which we now 
have. So you start with any of these techniques to get the remaining stuff. 
 
Optimal ARMA Modeling 
 
        You can use a very good linear method. 
We know our ARMA system looks like this 
 
And the equation for a particular yk will look like this 
 
yk  = b0xk + b1xk-1 + b2xk-2… + a1yk-1 + a2yk-2 + … 
 
So basically you can have lots of such equations (for different values of k) which can be 
expressed as 
 

�x0  0    0    0    0   ...  0    0    0    0    ...  �     �b0�          �y0� 

�x1  x0   0    0    0   ...   y0   0   0    0    ...  �     �b1�   =     �y1� 
�x2  x1   x0   0     0   ...  y1   y0    0     0   … �     �b2�          �y2� 
�x3  x2  x1   x0    0   ...  y2  y1    y0    0   ...  �   �.. �          �y3� 

�x4  x3  x2   x1     x0  ...  y3  y2   y1     y0  ...   �   �.. �          �.. � 

�.    .      .    .      .    ...  .    .     .     .     ...   �   �a1�          �.. � 

�.     .    .     .     .     ...  .    .     .     .     ...   �   �a2�          �.. � 

�.     .    .     .     .     ...  .    .     .     .     ...   �   �a3�          �.. � 

�.     .    .     .     .     ...  .    .     .     .     ...   �   �.. �          �.. � 

�.     .    .     .     .     ...  .    .     .     .     ...   �   �.. �          �.. � 

�.     .    .     .     .     ...  .    .     .     .     ...   �                      �.. �    
�.     .    .     .     .     ...  .    .     .     .     ...   �                  �.. � 

�.     .    .     .     .     ...  .    .     .     .     ...    �                      �.. � 
 
 
This again may look like the Toeplitz matrix but isn’ t, its more of double Toeplitz (notice 
the x’s and y’s). Solve this using Least Squares and you will get the linear, optimal 
ARMA system identification. 
 
 



                 
Applications of Least Squares: 

1. Stock Market Prediction 
If the next day’s stock market value is dependent on the rise or fall in the pass few 
days then you can model it as the following system, where all the x’s are the stock 
market sensex everyday. 
 

 
 
2. Innovations Process 
3. Used for Compression 


