
Random Processes

30th March 2004

Summary of the lecture

We defined the term random process.

We said that we want to predict it, using something called a Wiener filter.

We defined a class of random processes, called stationary random processes, that are especially
suited to Wiener prediction.

We defined filtering of a random process, and discussed what happens to a random process when
it is filtered.

We defined the power spectrum of a stationary random process.

Random Processes

A random process is a sequence of random variables.

Usually we look at this sequence as time-ordered. Suppose there is this guy with nothing else
to do, tossing a coin every second. Associated with each time t, there is a random variable—the
result of the coin toss. Before he starts tossing coins all the results are unknown and therefore
random variables. At time tn, the nth random variable is “opened”.

Because there are infinitely many random variables in a random process, the PDF is not defined
as an infinite dimensional table, but by defining the PDF of every finite subset of the sequence.
So there are (infinitely many) finite dimensional tables now.

Prediction of Random Processes and Stationarity

We are interested in random processes because we can use them to model things like speech, and
then use this model for compression.

The idea of compression is to predict the next outcome of a random process, and then transmit
only the error between the actual outcome and the prediction. If our prediction is good, the
error will have much less energy, so fewer bits have to be transmitted.

One method of prediction, called Wiener prediction, is to predict an outcome by a linear combi-
nation of the previous n outcomes. The coefficients in this linear combination must be constant
numbers—we can’t change them for every prediction.
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Consider what Wiener prediction does:
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Figure 1: Wiener Prediction

Shown above are two predictions. Each uses the previous three outcomes, weighted by the same

numbers a0, a1, and a2.

What kind of processes are suitable for this kind of prediction ?

The a’s depend on the joint PDF of the random variable being predicted and the one being used
for the prediction. So the suitable processes are ones where any random variable Xn has the
same joint PDF with the previous three random variables Xn−1, Xn−2, and Xn−3.

Such a process is called stationary of order 3. In general you can have a stationary process of
order L, where the joint PDF of Xn and Xn−i is same for all n for each i <= L.

If a process is stationary of order L it is stationary of all orders less than L. A process that is
stationary of all orders is called a strict-sense stationary process.

Strict-sense stationarity is a very restrictive. Not many real life random processes are strict-sense
stationary. Instead, a wider restriction can be made on the random process. Instead of saying
that the entire joint PDF of Xn and Xn−i should be same for all n, we will merely say that
E[XnXn−i] should be same for all n.

Such a process, where E[XnXn−i] depends only i, is called a wide-sense stationary process.

Henceforth when we say “stationary process”, we will mean “wide-sense stationary process”.

The auto-correlation function

Define
γxx(i) = E[X0Xi]

Properties worth noting:

1. γxx(i) = γxx(−i). (Because E[X0Xi] = E[XiX0].)
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2. γxx(0) is the variance of X0 (or any Xi, because they all have equal variance).

3. γxx(0) ≥ γxx(i), ∀i. (Because nothing can be more correlated with a random variable than
that random variable itself.)

4. If γxx(0) = γxx(k), then γxx is periodic with period with k.

Filtering of Random Processes

Take a random process x, convolve it with a filter f , and you get another random process y.
Going to the analogy of closed boxes, this new random process consists of boxes which when
opened cause some boxes in the original process to be opened and added up using the gather
kernel.

x

f

y

Figure 2: Filtering a random process makes another random process

If x is strict-sense stationary, then so is y.

Define a white noise process as one in which all the variables are uncorrelated. The autocorrelation
function looks like the Kronecker delta:

γxx(i) = δ0(i)

If x is white noise, what is kind of process is y ?

For example if f is of order 3:

Y0 = f0X−1 + f1X0 + f2X1

Since the E[XiXj] = 0 for i 6= j,

E[Y 2

0 ] = E[f 2

0 X2

−1 + f 2

1 X2

0 + f 2

2 X2

1 ]

Therefore:
γyy(0) =

∑

i

f 2

i

Next,
E[Y0Y1] = E[(f0X−1 + f1X0 + f2X1)(f0X0 + f1X1 + f2X2)] = f0f1 + f1f2
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Therefore:
γyy(1) =

∑

i

fifi+1

Similarly,
γyy(j) =

∑

i

fifi+j = rff(j)

And so y is wide-sense stationary.

Now consider what happens if x is wide-sense stationary. We will prove that y is wide-sense
stationary and find a relation between γyy, γxx, and rff .

Consider an example f of order 3.

Then:
E[Y 2

0 ] = E[(f0X−1 + f1X0 + f2X1)(f0X−1 + f1X0 + f2X1)]

γyy(0) = E[Y 2

0 ] =
(
γxx(0)

∑

i

f 2

i

)
+

(
γxx(1)

∑

i

fifi+1

)
+

(
γxx(−1)

∑

i

fifi+1

)
+ ...

Next,
E[Y0Y1] = E[(f0X−1 + f1X0 + f2X1)(f0X0 + f1X1 + f2X2)]

γyy(1) = E[Y0Y1] =
(
γxx(1)

∑

i

f 2

i

)
+

(
γxx(0)

∑

i

fifi+1

)
+ ...

We can see that :
γyy = γxx ∗ rff

In the Fourier domain this is:

Γyy = Γxx ◦Rff where ◦ denotes pointwise multiplication.

But since rff = f ?
←−
f , so Rff = F ◦ F̂ = |F |2. So,

Γyy = Γxx ◦ |F |
2

Γxx is called the power spectrum of x.

4


