
Weiner Filtering 
 
WHAT IS AR RANDOM PROCESS? 
 AR process is a stationary random process whose coloring filter is 
Auto-Regressive(AR). Thus the present output is a linear function of 
previous outputs plus some innovation. The innovation can be white noise. 
 

 
AR(p) denotes a filter with ‘p’  poles for the corresponding AR random 
process. An AR(p) filter will have corresponding MA(p) inverse or 
whitening filter.  
 Now even though, we have infinitely long auto-correlation filter. But 
its corresponding de-correlating filter is finite. 
 
POWER SPECTRUM ESTIMATION: 
  
What is this? 
 Power spectrum estimation means estimating the Fourier Transform 
of auto-correlation function. 
 
Why? 
 At a time, we’ ll have only finite samples of a random process in hand 
and we’ ll have to estimate the power spectrum from that may be for some 
prediction. 
 
 
 
 



Ways of Power Spectrum Estimation: 
 

1. Finding the auto-correlation function of the random process and 
taking its Fourier Transform. 

2. Directly estimate the power spectrum. 
3. First, we find the whitening filter. Then we invert it to get the 

corresponding coloring filter. From the coloring filter, we find the 
auto-correlation function of coloring filter which is the auto-
correlation function of the stationary random process. In many 
applications, we don’ t have to go back to power spectrum from 
whitening filter. We can get Weiner filter directly from the 
whitening filter. 

4. Estimate Reflection coefficients of lattice filter. 
 
 
METHOD: 
 We have outcomes and we have an AR random process. We trying to 
estimate the coloring filter for this process provided order ‘p’  is known. 
We can do this using Least Square Deconvolution. 
 

 
 

��
�
�
�

�

�

��
�
�
�

�

�

6543

5432

4321

3210

xxxx

xxxx

xxxx

xxxx

       

�������� 43a a

  =      

�������� 76x x

 

 
 We’ ll estimate using MA filter. But as input x and output xadv are 
same. It is actually an AR filter. 



 
AR coefficients = MA coefficients 

 
Now we want best estimate with whatever samples we have in hand. 
Suppose, we have 25 samples viz x0….x24, then we’ ll get nice estimate 
for the 1-step correlation i.e. correlation between x0 and x1, x1 and x2 ….. 
and so on till x23 and x24.  This is because we have 24 pairs for the 
interval of 1. But for 23-step correlation value, we have just two pairs x0 
and x23, x1 and x24. Thus more no of samples means better estimate. 
 So for LMS, we give x, xadv and xbackward to increase the no of samples. 
This is valid because stationary random processes look the same from 
backwards.  
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Here a1,a2,a3,a4 are the coefficients of prediction filter. We can get 
whitening (prediction error filter) filter by putting 1 in present sample 
and negating previous coefficients. 
 

 Consider Z-domain, 
 Here the prediction filter will be- 
 a1z

-1 + a2z
 -2  + a3z

 -3 + a4z
 -4 

  
  
the prediction error filter will be – 



1 - a1z
-1 - a2z

 -2  - a3z
 -3 - a4z

 -4 

 
the corresponding coloring filter will be – 
 
   1 
  1 - a1z

-1 - a2z
 -2 - a3z

 -3 - a4z
 -4 

 
flipped coloring filter will be- 
 
    1 
  1 - a1z 1 - a2z 2 - a3z 3 - a4z

 4 

 
We have to convolve these two filters to get the power spectrum in 
rational form. Convolution will be Multiplication in z-domain. 
 
So the rational function for power spectrum will be- 
      1 
  (1 - a1z

-1 - a2z
 -2 - a3z

 -3 - a4z
 -4 )(1 - a1z 1 - a2z 2 - a3z 3 - a4z

 4) 
 
MA Processes: 
 For these processes, coloring filter is MA so corresponding whitening 
filter will be AR. 
 
ARMA Processes: 
 For ARMA processes, both coloring and whitening filter will be 
ARMA with poles and zeros interchanged between them. 
    
 
WEINER Filtering: 
 Weiner filtering is estimating a random process from few other 
random processes. Prediction is a special case of Weiner filtering where 
same random process is estimated in advance from previous samples.  
  
Jointly Stationary Random Processes: 
 X and Y are said to be Jointly Stationary Random Processes if and 
only if- 
1. If X is a stationary random process. 
2. If Y is a stationary random process. 
3.  If the cross-correlation rxy(k,l) depends only on the difference (k-l). 



 
Jointly Stationary Random Processes X and Y 

 
In the above figure, we can see two jointly stationary random 

processes X and Y. The correlation values shown by same color are 
equal. So we can see that X and Y are independently stationary plus their 
cross-correlation is also same for same interval. This makes them Jointly 
stationary random processes. 
  If two processes are jointly stationary, then we can design the Weiner 
filter for them. 
 
FIR Weiner Filter: 
 If we have two jointly stationary random processes X and Y and we 
want to predict Y from the samples of X. We now have auto-correlation 
of X and cross-correlation between X and Y. 
 Here 
  The auto-correlation of X is given by- 
   E{ x(n-l)x*(n-k)}  = rx(k-l)  

 
The cross-correlation of X and Y is given by-  
 E{ y(n)x* (n-k)}  = rxy(k) 
 
Now if ‘w’  is the Weiner filter response, we have- 
 w *  rxx = rxy  
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so 
 W = E[XXT] -1 E[XY] 
 
 
Causal IIR Weiner Filter: 
 Now we want to design a causal IIR Weiner filter for prediction of a 
random process Y from samples of another random process X. 
 

 
 
 We first calculate W which is filtered version of X. W is the 
innovation process of X. Now X and Y are jointly stationary, hence W 
and Y are also jointly stationary. 
 Now we have cross-correlation of X and Y. But we need cross-
correlation of W and Y. 
E[wk-i yn]  = E[ (xn-ih0 + xn-i-1h1 + xn-i-2h2 + ….) yn] 



  
   =   h0 E[xn-i yn] + h1 E[xn-i-1 yn] + h E[xn-i-2 yn] + ….. 
 
rwy(i)   =   h0rxy(-i) + h1rxy(-i-1) + ………. 
 
rwy  = h *  rxy 

 

q(i) = E[W(n-i)y(n)] = rwy(-i) 
 
 as we want causal filter only, 
q  = [flipped rwy]+ 
 = [(flipped rxy) *  (flipped h) ]+ 
 
h*q = h * [(flipped rxy) * (flipped h) ]+ 
 
Here h and q both are causal so even (h *  q) is also causal. 
 
UNREALIZABLE Weiner filter (Non-Causal): 
  

 
Non-Causal Weiner Filter 

 
 Here we have all boxes( analogy!) open. So we know all samples of 
X. So now comapared to previous case of causal filter, we have 
 
 
      q  = [flipped rwy]  
 

h*q = h * [(flipped rxy) * (flipped h) ] 
 
h*q = h * (flipped h)* (flipped rxy)  
So in Z-domain – 
H(z)Q(z)  = Rhh �yx  
    



 let ‘g’  be inverse filter of h. Then Rgg will be auto-correlation of X. 
= �yx / Rgg  
 

H(z)Q(z)= ����yx /  ����xx 
 

 

 

Weiner Filtering for noise removal: 
 
 

 
  Removal of noise from the past samples is also called 
smoothing.  
 
E[XtXt-i] = E[(yt +Nt)(yt-i+Nt-i)] 
 
  = E[(yt yt-i)] + E[(Nt Nt-i)] + E[(yt Nt-i)] + E[(yt-i Nt)] 
   
 rxx(i) = ryy(i) + rNN(i) + ryN(i) + rNy(i) 
 
Now last two terms are zero cause noise is most of the times un-
correlated with signal  Y. 
 If noise is white noise, then rNN(i) is a delta function. 
E[YtXt-i]  = rxy(i) 
  = E[YtYt-i] + E[YtNt-i] 
 
 rxy(i) = ryy(i) + ryN(i) 


