Lecture Date: 16™ & 17" Apr ‘04

Solving Least Squares

The problem

Given a vector Y and a set of basis vectors A = {aj,az,...an }, we want
to find the measure of Y in terms of A i.e. find M such that

MA =Y

The vector space spanned by Y and A differs, giving us a set of over-
determined equations. So, we find an M such that

[| Y - MA || is minimum.

So, we are basically trying to - find the shadow of Y in the subspace
spanned by A, and also find the linear combinants, which add up to
that shadow. This is illustrated by the figure below. The vectors in red
are the linear combinants in the direction of al & a2.
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The vector in pink is the shadow of Y in the subspace of A. ‘e’ is the
error, which is orthogonal to the subspace spanned by A.

We notice that if the A is an orthogonal basis, the solution to the
problem is simplified. If the basis is orthogonal, then the linear
combinants are just the coordinate values of Y (the analysis and
synthesis matrix is same).

Mathematically, the same can be justified by the fact that the inverse
of an orthogonal matrix is its conjugate transpose.

To find the linear combinants we need the inverse of the basis matrix
as shown below.



AC =Y, Cis [ A1, Aa....., Ay], the scales by which each direction in A
needs to be scaled so that they all add up to Y.
C=A1Y.

Thus the least square problem is reduced to finding a set of orthogonal
set of basis Q such that

Span{Q }=Span{ A}

i.e. a set of Orthogonal vector space spanning the same subspace as
that of the given basis.

For example in a 2-D subspace, it can be shown as below. q1 and g2
are the normalized orthogonal vectors for the subspace of al & a2
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Therefore we have different methods of orthogonalizing the basis
vector A.

I. Graham Schmidt Method

This is the successive orthogonalization (the QR method).
Let A contain n linearly independent vectors. We want to find the
orthonormal basis for A

gl is al/|al]
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For a2, we take the projection of a2 on al, to find the orthogonal
vector g2
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0 g2 =a2-projofa2 onal/|a2 - projofa2 onal|

g3 is a vector orthogonal to subspace of al& a2. Its simple to see this
a least squares problem. (given vector a3, and need to find its shadow
in al & a2, so that we can find the direction of the error which is
orthogonal to al & a2)

Hence we use the orthogonal vectors ql1 and a2 to find g3.

First we drop perpendicular to gl and g2 (refer to the figure below)
shown in blue. Assume a3 is coming out of the monitor.
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Now, if we look at a3 to be made up of 2 parts, 1 which lies in the
subspace of ql, g2 and the other remaining is the component
orthogonal to q1 & g2.

By, dropping perpendiculars on gl and g2 we find the projection of a3
in g1 & g2. Since gql,q2 are ortho to each other, these projections
when added up will give the shadow of a3 in g1 & g2. Subtracting this
from a3 gives us the component that not in q1 & g2 i.e orthogonal.

In the figure, the shadow of a3 is in red.
0 gl =al
0 g2 = a2 - proj q1 a2
[0 g3 = a3 - proj q1 @3 - proj q2 a3
The same can be shown by the following transfer network

A can be considered to be made of 2 vectors Q and R, such that

A = QR, Q is the orthogonal basis and R is an upper triangular matrix,
which is the transfer n/w shown in the figure.



The reason it is easy to invert A is that triangular matrices are simple
to invert.
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We have the linear combinants of Y in terms of Q, namely Y’s
coordinate values. But, what we actually want are the linear
combinants in terms of A. This can be done in a simple way shown by
the figure below.
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We find the projection vector of a3 on g3. (Note, for a 3-D space, only
a3 can have any energy along g3). We use the same proj vector to
find a vector along a3 such that Yg3 is its projection. By similarity we
see that this all the energy Y can have along a3. We subtract this from
Y, so the only components left in Y would be of al and a2. They can
too be found in the same way.

Why this method is not that good

It is easy to see in this method that the error seeps through. If we
have to find the Q for n vector space, the final error is n times as large
as the initial error.

Solution: Modified Graham Schimdt’s Method

Similar to GSM, but after finding an ortho vector gn, we find the
energy of each remaining vector in A along gn and subtract this
energy. It is easy to see that the two methods are equivalent, but the



energy is reduced stepwise from each vector. This gives better
numerical results.

Why both methods are bad

For ill-conditioned vectors, we get numerically bad results. Consider
two vectors very close to each other, the result after subtraction has
low resolution, giving bad results.

//} <——  Not accurate

IT Givens Rotation

Instead of finding the orthogonal basis, we start with an orhto basis
and then rotate it into to mach the given subspace. The error here will
be because of the fact that the subspaces spanned by the 2 basis may
not be identical, but the error doesn’t get amplified proportionally to
the no. of vectors in the basis.

The important thing to note here is that are doing planar rotations, so
at a time only 2 co-ordinates changes, the ones which are in the plane
of rotations

We need to match q1 with al, g2 with a2 and so on. We do this in
steps.
1. Take al and rotate it into g1 (the inverse rotations are the ones
required to rotate gl into al).
2. Then we rotate a2 into the plane of gl & g2 such that not
component along g1 does not change.
We successively do this till A is rotated into Q.

Consider a 3-D space. If we want to rotate al into X axis, we could
first rotate in the X-Z plane and then in the X-Y plane or first in the
X-Y plane and then in the X-Z plane. We choose the following method

Choose the plane with one axis as the one you want to zero out,
and the other the axis which we want to move into.

For a 4-D space



all a2l
al2 az22

al = a2 = and so on.
al3 a23

ald a24

For moving al in q1, we want to zero out al4 component, so choose
the al1-al4 plane of rotation.

cosd 0 0 sno
1
O Rotation matrix = 0 0
01 0
-sn® 0 O cos®d
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Then we use all-al3 plane of rotation followed by all - al12.

ald

For rotating a2 into X-Y plane, we have to ensure that X component
is not in the plane of rotation.

So, we choose a22 - a24 as plane of rotation and then a22 - a23
as plane of rotation.

We want to solve for ‘X’ using least squares

- A=QR

QRx =B
Rx=Q'B (Q=Q")
x =R1 QB

Since, we need the inverse of Q anyway, we do not solve for the
inverse rotations. The above rotation matrices are Q!, and the upper
triangular matrix formed by applying these transformations to A, is R.



Householder Reflections

“No our reflections are upside down, left-right flipped, back-fwd
flipped. The man in the mirror is actually an alien, with no symmetry
or is it up down symmetric. It's all about how we turn!”

“Dabum dubum thubum...!”

Householder Reflections

The reason we use reflections to match the orthogonal basis to A, is
that reflections are less expensive than rotations.

" <«—— Plane of mirror

|al|ql

Therefore, r1 = al - |al | q1

We want to reflect A in the direction of r1.

This is given by ri' A. If we think of A to consists of two parts, one
component along in the mirror, and the other ortho to it. So, the
component in the mirror does not change, and the other gets flipped.

Therefore, after flipping we get -ri" A.
Then we reconstruct the vector i.e -rir’ A
The component that doesn’t change is A - riry' A.

O the final vector is the addition of these two vectors

A—rlrlTA—rlrlTA
= (I—2r1r1T)A

For, reflecting a2 into g2, we must ensure that component along g1l
doesn’t change. So, we flatten this dimension, so that it is just point
and lies in the mirror.



a2l
az22
a23
az24

Thus Q is the matrix formed by (I - r r' ) and R is the triangular
matrix formed transforming A.

<+—— Don't consider this component
a2 =



