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Convoluted Ants: 
 
We first solved the problem of “communist ants”  : given 2 ant hills, each having some 
amount of sugar, the ‘ richer’  ant hill gives 10% (arbitary communist rule) of the 
difference between the sugar levels to the other ant hill.  
 
If we assume that the 2 hills can communicate and let each other know of their resp. 
sugar levels, the the solution is obvious: the hill with more sugar calculates the difference 
using the ‘arithmetic ants’  and sending it to the other hills. 
 
Assuming the ant hills can’ t communicate (because say, the hills are a  great distance 
from each other) or the ‘arithmetic ants’  have gone on vacation ( hence the difference 
cannot be calculated), brings us to the more interesting solution ( suggested by the ‘dsp 
ants’ ) . If each ant hill sends 10% of its sugar to the other hill, then the problem is solved.  
Example: A  B 
Original: 20  30 
Amount sent:    2  3 
Final Amount:  21  29 
Yippeeee !!  
 
This can be generalized to ‘n’  ant hills, each ant hill have ‘m’  neighbour hills and a 
corresponding rule to distribute sugar to each of its neighbours. 
 
We immediately notice that this method is “scatter convolution” . Wow! , a true natural 
wonder (recent reports tell us that the ‘dsp ants’  were handsomely rewarded).  
 
Taking a hint from their communist friends, the capitalist ants also devised a similar 
solution for their problem: each ant hill is supposed to steal from its neighbour hill. 
Thus, each hill goes to its neighbour hill and steals a certain amount (governed by the 
capitalist rule) and collects and adds all the loot at the end of the day. 
 
From this analogy it is easy (and fun) to see that the scatter and gather are equivalent if 
we ‘ flip’  the kernel (extra brownie points for anyone who finds the origin of the word 



‘kernel’ ) i.e. suppose the communist ants give 10% to left hill and 20% to right hill and 
keep the rest, this is equivalent to the capitalist ants stealing 10% from their right hill and 
20% from their left hill. 
 
 
 Properties: 
 

Next we reviewed some of the properties of convolution using the ant analogy: 
 
 

1) Commutative: If we swap the communist rule with the original sugar amounts and 
perform the same scatter operation, then the result obtained will be the same. 
This point brings us to the reason why the scatter approach is used to define 
convolution: the scatter convolution is commutative as opposed to the gather. 
 
A non-rigorous proof  for the latter follows: 
Assuming that scatter operation is commutative and represented by * , 
We prove that  the gather operation (represented by #) is  not. 
 
    A#B = A *  flip(B) 
 =  flip(B) *   A 
 =  flip(B)  # flip(A) 
 != B#A 
QED 

2) Associative: Suppose we use rule B on the first day and then apply rule C to the 
result obtained , the final result obtained at the end of  the 2nd day is  the same as 
using  the dsp ants to apply the rule B to rule C on the 1st day and then applying 
this combined rule to the original amount on the  2nd day.  
i.e. (A*B)*C  = A*(B*C) where A  is  the original  amount. 
 
Combining the first 2 rules allows us to write the expression A*B*C or B*C*A 
(or any such permutation) and they all represent the same result. This a prime 
example of mathematical symbols hiding the beauty of the underling operation. 
 

3) Identity: The identity in this case is each ant hill keeping all the sugar for itself. 
 

4) Linearity: k(A*B) = kA*B and A* (b+c) = A*b  + A*c 
 
 
Strength Matters! 
 
 
We define the strength operator on a vector as 
S (A) = Σ ai 

 

 Things you need to know about strength: 



1) It’s a field. 
2) It’s a scalar function (maps  a vector to a scalar). 
3) It’s linear. 
4) It isn’ t shift invariant. This is because for an operation to be shift invariant 

both the input and the output  should  have the  same number of components. 
In the case of the strength operator, since the output is a scalar, it’s not shift 
invariant. 

5) Strength Theorem:  
S(f*x) = S(f) S(x) 
 
This shows us that if the kernel adds to 1, then the convolution operator 
conserves strength. 
But if this not true, say the kernel strength is less than 1 (to compensate for 
loss during the transportation of the sugar due to hungry ants), then after the 
scatter operation the strength of the resultant sugar will be less than that of the 
original , and  the strength theorem tells us how much was the loss. 
 
 
 

When convolution goes bad: see deconvolution (seedy convolution!)  : 
 
Deconvolution is when, given the signal and the output, we have find out the response of 
the system or equivalently given the output and the response of the system, we have to 
figure out the input. 
 
Real-world applications of deconvolution: 
 
Examples when you are given the output and the response: 

1) given a ‘blurred’  image, you obtain the blurring kernel, and using deconvolution, 
get the original un-blurred image. Such a technique is commonly used to correct 
the defects (due to the curvature) in telescope lens. 

Examples when you are given the output and the input: 
2) Pre and post equalization is used in the telephone system to compensate for the 

distortion caused by the noise in the channel (found out by using deconvolution) . 
3) To compensate for the response in large theaters the sound output is modified. 
4) Deconvolution can be used to get better quality pirated VCDs ! 

 
 
 
 
 
 
 
 
 
 



 
 
Example showing procedure for deconvolution: 
 
Output : 5 10 20 100 50 20 10  
Kernel: 0.1 0.8 0.1 
 
Assuming that the system is causal, 
 
5 = 0*0.1 + 0*0.8 +0.1*  x  = 0.1*x 
 Thus, x0 = 50. 
  
10 = 0*0.1 + 0.8*x0 + 0.1*x1 = 0.8*50 + 0.1*x1 
 x1 = 10 – 0.1*x1 - 0.8*x0 = -300 
  
Generalizing,  
 
x = y-f D(x)  
where y is the current output, 
 f is the kernel function  
 D(x) is delay x  
 
Taking Z-transform , 
X = Y – z-1 F X 
X = Y / (1 + z-1 F) 
 
This equation shows us that deconvolution follows the feedback network. 
Further given a FIR convolution system the corr. deconvolution is a simple IIR system 
(all pole system) with the zeroes getting mapped to the poles. 
Thus, though a FIR system is stable, its inverse IIR system can be unstable if the pole lies 
outside the unit circle.  
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Types of Filters 
 
We saw three types of filters, viz. MA, AR, and ARMA. These do not include the entire class of 
filters but cover an important class of filters and are very useful. 
 For linear systems where output y(n) is related to the input x(n) by the difference 
equation: 
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We considered three cases: 

1. Moving Average Filters (MA) 
 
In this case, the linear filter, 
 
is an all-zero filter and the difference equation for  
their input-output relationship is 
 

...)( 2110 +++= −− kkk xfxfxky  

 
Note: The strength of these filters may not be 1 
 
 
 
 

2. Autoregressive Filters (AR) 
 

In this case, the linear filter, 
 
is an all-zero filter and the difference equation for  
their input-output relationship is 
 

...)( 2110 +++= −− kkk ygygxky  
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AR Filters are linear shift invariant systems 
 
Refer to previous AR filter figure. 
 
Using the figure we can calculate the expressions for y0, y1… 
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This can be seen as 

[ ]�)2()(1 210
3

01
2

00 gggggggF

FXY

+++=

∗=
 

 
By looking at the difference equation of AR filters we observe that yk is described in terms of 
k and does not refer to any particular value of y or x. Hence we can say that AR filters are 
shift invariant 
 
To show that AR is linear, we have to show that 
 
 
 
 
 
 
 
 
 
 
Let us superimpose the blue and red AR systems as in the figure below and finally add up the 
two results in Σ2. We can look at the AR system as containing the summation element Σ1, the 
delay elements z-1 and the multiplying elements gk.  
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Let us denote, for convenience, Σ2 as a black filled circle. 
 
Add (Σ2) before the addition (Σ1) or after, it doesn’ t make a difference… 
 
 
 
 
 
 
 
 
 
 
Add (Σ2) before the multiplication (gk) or after, it doesn’ t make a difference… 
 
 
 
 
 
 
 
 
 
 
Now, for each of the three Σ2 we have the following: 
Next three figures for the Σ2 before g2  
Among the next three, the 2nd and 3rd for the Σ2 before g1 
Among the next three, the 3rd for the Σ2 before g0 
At each step we combine the Σ2‘s between the delay elements 
 
Add (Σ2) before the delay (z-1) or after, it doesn’ t make a difference… 
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Add (Σ1) before the addition (Σ2) or after, it doesn’ t make a difference… 
 
 
 
 
 
 
 
 
 
 
 
 
 
Another way of showing AR filters as linear is by induction. 
y0 = x0 forms the basis of the induction hypothesis 
Let us assume yk-1, yk-2,… to be linear 
yk is defined in terms of xk and yk-1, yk-2,… in the AR filter difference equation. 
Since xk is just added and the y terms are multiplied by constants, we can say that yk is also 
linear. 
Hence AR filters are linear systems. 
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3. Autoregressive, Moving Average Filters (ARMA) 
 
In this case, the linear filter, 
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is an pole-zero filter which has both finite poles and zeroes. 
 
ARMA filters are basically cascaded MA and AR filters.  
 
There are 2 typesi of ARMA filters: 
 
Type 1 (MA →→→→ AR)     Type 2 (AR →→→→ MA) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Type 2 filters have an advantage over Type 1 in that only one set of latches is required for their 
implementation. 
 
When constructing an ARMA filter, the AR filter may be unstable. As long as the poles of the 
AR filter match the zeros of the MA filter, the resulting ARMA filter is stable. However, 
sometimes we may not be able to match the poles and the zeros perfectly. Some of the reasons 
are: 

1. On computers, due to precision / truncation errors 
2. Incapability of specifying the physical media (plant errors) 
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Given two vectors y and x, if we wanted to fit them together we would scale one of them by a 
scalar a. Using mathematical symbols we would write it as: 
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This is a minimization problem where a has to be varied to minimize f 
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f(a) is a parabola which can have a minimum only if the coefficient of the second degree term is 
greater than zero viz. xTx. This is true for an upward facing parabola as this term dominates every 
other terms. 
 
For a parabola ax2+bx+c the minima is at –b/2a. This is obvious because the intersections with 
the x-axis are at –b/a and b/a and the parabola is symmetricii. 
 
Deconvolution Revisited 
 
As we have seen before an LTI system can be represented as 

 

AXY =  
 
Further, deconvolution is the process of finding the kernel/input given the output and the 
input/kernel. Hence we can view deconvolution as matrix inversion where in we need to find X 
given Y and A by finding A-1 and pre-multiplying the above equation. 
 
A generalization of the above problem can be stated as  
 
In most practical situations, X does not span the space of Y and hence there is no exact solution to 
the above equation. Thus we formulate the minimization problem as: 
 
Given Y and A, we have to get X such that 
 

 2
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This problem is very similar to the problem we encountered earlier. Y, A and X in the 
above equation correspond to y, x, and a in the earlier problem. There a was a scalar here X is a 
vector. We can see this as multiplying each multiplying each column of A (a vector) with each 
row of X (a scalar).  

Thus it may seem that we have reduced this problem into multiple instances of the 
previous problem. However, this is not so because the columns of A do not form an orthogonal 
basis. 
 
 The problem can be seen when we consider the following figure in which Y is a vector in 
the plane of a1 and a2 (A spans Y). Let us try and adopt the method of the previous problem here. 
We project Y onto a1 and project whatever is remaining onto a2. We see that we are still left with 
some amount of Y and we have to repeat the same procedure again (and again…). Although this 
procedure converges, it takes a lot of time. 
 The figure below shows the first few steps in the projection and re-projection of Y along  
a1 and a2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a1 

a2 

Y 
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Least Square Matrix Inversion 
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We write the above equation as 
 
f(X) = XTPX + QTX + R 
 
where  P = ATA 
 Q = -2ATY 
 R = YTY 
 
f(X) is a field representing an n-dimensional paraboloidiii. 
 
The above equation will have a minima only if x∀  XTPX > 0 
P is the positive definite, written as 0	P  
 
The above equation using summations: 
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We take the partial derivative with respect to xi in order to minimize f(X) 
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The minima of f(X) can be found by solving 0
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This is very similar to the solution –b/2a if we put Q as b and P as a (Assuming P is symmetric 
which it is in most practical cases). 
 
Substituting for P and Q 
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X=A�Y 
 
A��= (ATA)-1 is called the pseudo inverseiv. 



 10 

 
In the above equation AT is the projection matrix. It projects Y onto the basis vectors of A. 
Finally (ATA)-1 converts the projections into linear combinandsv. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the above figure, the red vectors are the basis, the blue vectors are the projections of Y and the 
green vectors are the linear combinands. 
 
 
 
Let us review what we have done. Given the vectors Y and transformation we had to find X such 
that Y - AX was minimum. Usually Y has far more components than X. We have to tweak only a 
few parameters of the input vector X. For example, 
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Here X is a 2-dimensional vector and Y is a 4-dimensional vector. A converts X from its 

coordinate system into the coordinate system of Y, thus making Y and AX comparable. AX is the 
linear combination of the bases of A weighted by the components of X. AX still lies in its plane of 
X while Y is outside that plane. Hence we cannot directly equate them. Instead we drop 
perpendiculars to the space of A and equate them. Dropping perpendiculars is done by pre-
multiplying them with AT 

 
Hence,  AT AX = AT Y 
 
And  X = (ATA)-1 AT Y 
 

Note that this looks very similar to 
xx

xy
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=  which we had found earlier. 
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Udayan’s comments and corrections – 
i Because of commutativity, type I and type II systems are equivalent. Thus, these are not two types of ARMA 
filters. Rather they are two ways of implementing them. 
ii The parabola we are talking about is completely positive, and has no roots. But the ab 2/−  formula holds for 
complex-root parabolas just like it does for real root parabolas. 
iii “Quadratic surface”  
iv A��= (ATA)-1AT 
v “Combinants” !! 
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Why do we need Auto Regressive Systems? 

    If the system plant is recursive e.g. standing wave echo. 
    Moving Average requires more latches 
    You need many coefficients for FIR 
    You can use it in integrator, differentiator and shock absorber 
 
 
Modeling AR systems: 
 

1. Model the inverse of the AR system as MA 
We know that if the coefficients of the Moving Average system are 1, f1,f2 and f3 , the 
coefficients of the (inverse) AR system are 1, -f1,-f2 and -f3 respectively. 
 
 
 
 

 
 
 
 
 
 



 
 
 
 
 
2. Direct AR modeling 
We know the equation of the AR filter. 
 
y0 = cx0 + b1y-1 + b2y-2 + b3y-3 ……. 
 

Now since we start with zeroes, we can write the AR filter in matrix form 
as follows: 
 
�0    0    0    x0    �  �b1�          �y0� 

�y0   0    0    x1   �  �b2�   =    �y1� 
�y0   y1   0    x2  �  �b3�          �y2� 

�y0   y1   y2   x3   �  �c  �          �y3� 
 
 

 



 
 
 

This method gives the same answer as the inverse. But the inverse method is 
easier. 
Direct AR is good if we have c=0. (c=0 indicates that the system does not depend 
on any input) 
 
Note: The matrix that we observe in the direct AR modeling is not the Toeplitz 
matrix, as it is not the shift in shift out x thing. 
 

ATA: 
Some stuff about ATA. 
It is the dot product of the bases and is the skinny matrix whose size is the order of the 
system. 
 
AT has the bases on the rows and A on the columns. 
 
 

 
 
If AT is orthogonal then ATA is diagonal. Impulse is an example of orthogonal bases. 



ATA is the auto correlation of the original matrix and it is a square, symmetric matrix and 
the dot product of the bases. 

Its dimension = no. of coefficients of the system. 
 
Advantage of orthogonal bases. 
If the bases are not orthogonal, then adding a base changes how the previous filter is 
used. 
 
If there is only one base, so the red line shows how the filter is used 

 
 
Now the new base is not orthogonal, we wont know how to add the previous filter, its not 
equal to the one base case. 
 
 

 
But in case of orthogonal bases there is no change in how the previous filter is used. 
 

 



ARMA system identification: 
There are two cases in this depending on the input. 
If you can control the system input then we have three approximation techniques as 
follows: 
 

1. Pade Approximation Technique 
 

 

 
In this technique we give an impulse as input. Assume that it has p poles and q zeroes. 

1. Since the input is finite, we know that the middle line will have all zeroes after the 
‘q’. 

2. And you know the p+q output after this middle input is given to the AR (the 
impulse response) 

3. With this information (p+q output and q followed by 0 input) you can find out the 
coefficients of the AR filter. 

4. Get the inverse of it, and then get the MA coefficients. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2. Prony’s Approximation Technique: 
 

 

 
 
In this you use the funda of all zeroes after q and Least Squares. 
So consider lots of zeroes in the input and you get some huge output(for the AR filter). 
Apply Least Squares and you can get the AR coefficients. Continue as above for MA. 
 
 

3. Shanks’ Technique: 
Use the first part of  Prony or Pade and get the AR coefficients. Now we are going to 
consider the equivalent MAAR 

 

 



You have the impulse response of the AR system i.e the MA input. And given and 
impulse you know the system output. Use these to get the MA coefficients. 
 
 
ARMA as a large MA 
If you can’t control the system input i.e cannot give an impulse then there is another 
technique 
Model the ARMA as a large MA system. Give input in the order of millions, which will 
get you huge output. Now Least Squares using information will give you a nice 
approximation of the Impulse Response of the system. 
In all the Prony, Pade and Shanks we first found the impulse response, which we now 
have. So you start with any of these techniques to get the remaining stuff. 
 
Optimal ARMA Modeling 
 
        You can use a very good linear method. 
We know our ARMA system looks like this 
 
And the equation for a particular yk will look like this 
 
yk  = b0xk + b1xk-1 + b2xk-2… + a1yk-1 + a2yk-2 + … 
 
So basically you can have lots of such equations (for different values of k) which can be 
expressed as 
 

�x0  0    0    0    0   ...  0    0    0    0    ...  �     �b0�          �y0� 

�x1  x0   0    0    0   ...   y0   0   0    0    ...  �     �b1�   =     �y1� 
�x2  x1   x0   0     0   ...  y1   y0    0     0   … �     �b2�          �y2� 
�x3  x2  x1   x0    0   ...  y2  y1    y0    0   ...  �   �.. �          �y3� 

�x4  x3  x2   x1     x0  ...  y3  y2   y1     y0  ...   �   �.. �          �.. � 

�.    .      .    .      .    ...  .    .     .     .     ...   �   �a1�          �.. � 

�.     .    .     .     .     ...  .    .     .     .     ...   �   �a2�          �.. � 

�.     .    .     .     .     ...  .    .     .     .     ...   �   �a3�          �.. � 

�.     .    .     .     .     ...  .    .     .     .     ...   �   �.. �          �.. � 

�.     .    .     .     .     ...  .    .     .     .     ...   �   �.. �          �.. � 

�.     .    .     .     .     ...  .    .     .     .     ...   �                      �.. �    
�.     .    .     .     .     ...  .    .     .     .     ...   �                  �.. � 

�.     .    .     .     .     ...  .    .     .     .     ...    �                      �.. � 
 
 
This again may look like the Toeplitz matrix but isn’t, its more of double Toeplitz (notice 
the x’s and y’s). Solve this using Least Squares and you will get the linear, optimal 
ARMA system identification. 
 
 



                 
Applications of Least Squares: 

1. Stock Market Prediction 
If the next day’s stock market value is dependent on the rise or fall in the pass few 
days then you can model it as the following system, where all the x’s are the stock 
market sensex everyday. 
 

 
 
2. Innovations Process 
3. Used for Compression 
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8th Feb 2004 
ADSP  : Lecture 6        Sunday [@ Codito, Pune ] 

Scribed by: Tanmay Dharmadhikari 
 
 
The lecture started with circular convolution calculation viewable with cylinders. This 

technique is also useful when the filter kernel is larger    (in sample size) than one period 

of the signal itself. 

 

Circular Convolution: Using Cylinders 

 Consider the signal and filter to be marked on two different cylinders as shown in 

the figure below. For circular convolution: 

a.) The filter cylinder and result cylinder both, are 

 rotated 1 unit about their height axes. 

b.) The corresponding points on the signal cylinder 

and filter cylinders are multiplied with each other. 

c.) These products are added to give the output at  

that point of the result cylinder. 

d.) On performing these steps for all the points we 

unfurl the result cylinder to get the convolution 

result. 

  

What if the filter size is larger than one period of the signal? The most intuitive thing is to 

change the size of the filter cylinder as well. Another solution that we can see is to mark 

the filter kernel on the cylinder spirally i.e. in rudimentary terms let the extra kernel 

points get marked below the kernel. 

The extra points are also used during the convolution along  

with the corresponding point from top. 

Thus during one cycle of our convolution process, for some  

points on the signal, we perform two multiplications.  

This idea can be simplified by adding the extra points into the  

corresponding kernel points that align with them. Thus, we get a new kernel of the same 

size as the signal period. 

Signal 

Filter 

Result 

Extra points 



With this clear we moved on to show that convolution of two signals is easier to calculate 

by 

(i) Decomposing the signals into their spiral components 

(ii) Convolving only those corresponding spirals which have the same frequency 

(iii) And finally synthesizing all these individual results to get the final result i.e. the 

convolution of the signals. 

 

Representing this algebraically: 

 Let x and f be the signal and filter we want to convolve. Lets decompose x and f 

into the spirals given by: 

 x = x1 + x2 + …+ xn  

 f = f1 + f2 + …+ fn  

xi, fi   are the corresponding spiral components of x and f with same frequencies 

 

∴ ( x * f ) = ( x1 + x2 + …+ xn ) * ( f1 + f2 + …+ fn ) 

        =     ( x1 * f1 ) + ( x1 * f2 ) + … ( x1 * fn ) 

  + ( x2 * f1 ) + ( x2 * f2 ) + … ( x2 * fn ) 

  … 

  + ( xn * f1 ) + ( xn * f2 ) + … ( xn * fn ) 

 

Now, we can prove that if the two convolving spirals do not have the same frequency 

then their resultant is zero and that only those with same frequency contribute to the 

value of the final convolution result. Thus the above equation reduces to: 

 

( x * f ) = ( x1 * f1 ) + ( x2 * f2 ) + … ( xn * fn ) 

 

The convolution of x and f is thus reduced to the ‘n’ convolutions of the ‘n’ 

corresponding spiral components and adding their individual resultants. 



This procedure is feasible because we know or rather have the data about each spiral 

component viz. : 

(i) Starting phase  

(ii) Individual frequency 

(iii) Individual amplitude 

The convolution result of each corresponding component pair is given by the spiral with: 

(i)  Starting phase  =  xiθ  + fiθ 

(ii) Frequency =  xiω - fiω   

(iii) Amplitude =  Nxiω fiω  

[N is no. of sample points.] 

 

 

 

We noted when to use which form of the Fourier Transform depending on the signal 

domain: 

 

Signal Domain  Transform 

Discrete & Finite  DFT 

Continuous & Finite  Fourier Series 

Discrete & Infinite  DTFT 

Continuous & Infinite  FT 

 

 

 

Shift Property: 

 Shifting a sequence in time results in the multiplication of the DTFT by a 

complex exponential (linear phase term): 

   DTFT 

x(n – n0)     e - jn0 
wX(e jw) 

 



 

We also saw the application of using rules governing linear systems to simplify 

convolution of continuous signals: 

Modify one of the signals in some linear way, perform the convolution, and then undo the 

original modification. As an example we used the derivative as the modification and it is 

undone by taking the integral. 

  

Diagram from DspGuide 
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Properties of FT (contd.): 
 
Duality property: 
 
Similar to the duality theorem in Boolean algebra wherein 0↔ 1, AND ↔ OR. 
 
Here,  
Frequency ↔  time 
 
The IDFT matrix and corresponding DFT matrix 
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So if we do ( )( )xDFTDFT , we get a flipped or inverted x at the output. This is because 
the DFT matrix is orthogonal and symmetric (not conjugate symmetric). 
 
Windowing Theorem: Duality applied to the Convolution theorem: 
  
Point wise multiplication in time        ↔      Convolution in frequency domain 
 
Applications of windowing theorem: 
 
1) Analysis of infinite signals: 
 
Given an infinite signal, we can use a 'suitable' size window to clip it in the time domain, 
so that it is easier to analyze. 
 

Arrows showing 
correspondence 
between the IDFT and 
DFT rows; angles are 
negated 



The size of the window depends on the nature of the signal being analyzed: 
         Slow changing signal ↔  larger window size 
         Fast changing signal   ↔  a small window 
 
A large window size implies more precise frequency information, while a higher time 
resolution (small time window) implies worse frequency resolution. This is similar to 
Heisenberg's Uncertainty Principle, wherein momentum and position, time and energy 
etc were canonically conjugate to each other. 
Another view to explain this phenomenon is by using information theory. Short signals 
have inherently smaller frequency resolution, and we cannot 'create information'. Of 
course, using non-linear heuristics it is possible to get better results. 
 
 
2) Amplitude modulation: 
 
The other application where we point wise multiply in the time domain is in amplitude 
modulation. 
 
Consider a modulation of a given signal with a single complex spiral having frequencyω . 
This results in the convolution of the signal with a delta shifted by ω  in the frequency 
domain, which of course results in the frequency shift of the signal from base band to 
higher band. 
 

 
 
 
 
 
 
 
 

Using duality, in the Frequency 
domain, it’s convolution with a 
shifted delta 

ω  
frequency 

In time domain, multiply with 
spiral of frequencyω  

time 



 
The above reasoning used the Duality theorem. 
 
One can also think about it directly by decomposing the signal and the modulator into 
spirals and using the fact that the multiplication of to spirals of frequencies 1ω  and 2ω , 
results in a spiral of frequency 21 ωω + (a frequency shift). 
 
So, the modulation theorem is the dual of the Shift theorem! 
 
 
Dual of the Derivative theorem: 
 
Multiplication in time domain by a ramp ↔  differentiation in frequency domain 

( )dtttf               ↔        
ωd

dF
 

 

( )dtttf�
∞

∞−

           ↔     
ωd

dF
   , at 0=ω (the dc value) 

The LHS represents the expected value of the signal [ ]XΕ . 
This property is also known as the First moment property of the FT. 
 
Similarly, 

[ ]2XΕ    = ( )dxxfx X�
2   = 

2

2

ωd

Fd
 at 0=ω  

is called the Second moment of the signal. 
 
Together these 2 properties are called the Moment generating properties of the FT, and 
are used to find the Variance of the signal. 
 
Another interesting point we covered was that when you add 2 random variables, their 
probability mass functions get convolved! 
 
 
Fast Fourier Transform: 
 
2 types: 
1) Decimation in time 
2) Decimation in frequency 
 
 
 
 
 
 
 



 
Steps for decimation in time FFT: 
(For the following figures, imagine that the x-axis index starts from 0, not 1) 
 
Given a signal 0, 
  
 
 
 
 
 
 
 
 
 
 
Separate it into even and odd bands 1 & 2 (using linearity), 
 
             1: Even band  
 
 
 
 
 
 
 
 
 
 
 
            2: Odd band       
 
 
 
  
 
 
 
 
 
 
2. Get 1′  & 2′ by down sampling. 
 
                      1′   :  
 
                       



 
                      2′  :  
 
 
 
 
 
 
 
 
 
 
 
3. Recursively get the DFT of these 2 signals 
4. Use stretch theorem (and rotation by w for shifted odd band) to get DFT of 1 & 2 
5. Then again use linearity to get DFT of 0 
 
The following recursion represents this process, 
 
 

( ) ( ) nnTnT += 2  
Which has the solution, 

( ) ( )nnnT lgΘ=  
 
This procedure represents an order improvement over the naive 2N algorithm. A similar 
analysis can be carried for decimation in frequency. 
 
 
Other improvements are possible: 

• Sparse matrices are used to get from 21 ′+′  to 0, since they can be multiplied in 
linear time. 

 
• Other bases reduce the constant in the nn lg  and are more suitable for use on 

computers. 
 

• Taking a 4-point instead of 2-point, gives rise to some common sub-expression 
savings. 

 
• Algorithms such Prime Number decomposition deals with finding DFTs of non-

dyadic sequences. 
 
These will be discussed in detail in later lectures. 
 



Another interesting point about the FFT is that apart from it being faster it is more 
precise: each coefficient is found after nlg  multiply-adds; as opposed to the n for naïve 
DFT. This leads to less round-off error.  
 
Interestingly, the best way to minimize round-off error when adding a sequence of 
numbers is to add the smallest two each time. 
 
So with all our knowledge, we can now do circular convolution in nn lg . 
 
 
 
What if you wanted to get linear convolution? 
 
Add enough padding to the signal to avoid wraparound distortion. 
 
 
  

                 
 
 
 
 
 
 
 
Can’ t use such a large FFT because: 

• Real-time applications: larger N, more time taken to do the convolution. 
• Precision problems: more N, more additions, less precision. 

 
So you would have a case where your kernel is of length 40, your signal is of length 1 
million, and you are only allowed (due to the two reasons mentioned above) to take a 
FFT of 1000! 
 
 
In which case, you use techniques such as Overlap-add and Overlap-save to do 
convolution, but don’ t get the transform. 
 
 
 
 
 
 
 
 
 
 

N L-1 

L 000000 

N+L-1 

Signal 

Kernel 

Linear 
Convolution 



 
Overlap-add method: 
 
M             : size of FIR filter kernel 
L              : size of the input data block 
N=L+M-1: size of DFT and IDFT 
 
To each data block we append M-1 zeroes and compute N-point DFT. Since each data 
block is terminated with M-1 zeroes, the last M-1 points from each output block must be 
overlapped and added to the first M-1 points of the succeeding block. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Input data 

L L L 

M-1 zeroes 

M-1 
points 
added 

together 

Output data 

Overlap-add method 

1x  
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Overlap-save method: 
 
M             : size of FIR filter kernel 
N=L+M-1: size of data blocks 
N              : size of DFT and IDFT 
 
Each data block consists of M-1 points from the previous data block followed by L new 
data points to form a data sequence of N=L+M-1. The kernel length is increased by 
appending L-1 zeroes and an N-point DFT is computed and stored. The first M-1 points 
of this are corrupted by aliasing and must be discarded. The last L points are exactly the 
same as the result from linear convolution. 
To avoid loss of data due to aliasing, the last M-1 points of each data record are saved 
and these points become the first M-1 points of the subsequent record. To begin 
processing, the first M-1 points are set to zero. 
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L L L 

Discard M-1 
points 
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INTRODUCTION TO UPSAMPLING & 
DOWNSAMPLING 

 
 
What is Sampling Rate Conversion? 
 
 As the name suggests, the process of converting the sampling rate of a 
digital signal from one rate to another is Sampling Rate Conversion. 
 
 Increasing the rate of already sampled signal is Upsampling whereas 
decreasing the rate is called downsampling. 
 
Why to do it? 
 
 Many practical applications require to transmit and receive digital 
signals with different sampling rates. So at many stages in application we 
need to do sampling rate conversion. 
 
How to do it?  
 
 There are two ways in which we can achieve sampling rate 
conversion: 
 

1. First approach is to do D/A conversion to recover back original 
analog signal. Then we can do A/D conversion with desired 
sampling rate. The advantage of this technique is that the second 
sampling rate need not hold any special relationship with old one. 
But the problem is signal distortion introduced by D/A and 
quantization effects of A/D.  

 
2. Second approach is to work in digital domain only. So we’ll have 

to predict the digital signal with desired rate using the already 
sampled signal in hand. 

 
 
Now for this lecture, we’ll look at the second choice of sampling rate 
conversion. 
 
 
 



 
UPSAMPLING 

 
Let’s consider, simplest case of upsampling. We want to double the 
sampling rate of signal. So what we do is insert 0s in between two 
successive samples. As shown: 
 
 

   
Obviously this is a bad approach. As we don’t have data for 
intermediate samples, let’s generate it. 

 
Method-1: Repetition 
 
 Repeat the current sample.  
The corresponding filter kernel will be 
 

 



 
The output waveform will be: 

 
 
 
Method-2: Interpolation 
 
 The intermediate sample value will be the average of its 
neighboring values. 
 The filter kernel will be: 
  

 
 
 
 
 
The output waveform will be: 
 

 



  
Now this a very good method but it produces, two aliases of each 
frequency in frequency domain . So we should cut the high frequency 
contents to avoid aliasing. 
 
Why to cut? 
 

 
 Because they don’t contain any new information. They are just 
repeating information. We also know that maximum frequency 
content in original signal cannot be greater than Fs/2 so there is 
definitely no more information in baseband. So we can afford to cut 
high frequency contents. 
  
How to cut it? 
 Use a perfect low pass filter. That is we will keep slow moving 
spirals and reject fast moving spirals in frequency domain. 

 

 
 

 
 



 
 
so filter kernel in frequency domain is as shown. Its amplitude is 1 for 
frequencies in the range - π/2 to +π/2 and zero for rest all frequencies. So we 
cut the high frequency aliases. So filter kernel in frequency domain is set of 
slow moving spirals having amplitude 1. 
 Let’s figure out, what will be the corresponding filter kernel time 
domain. 
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Thus the perfect interpolator is an Infinite Impulse Response (IIR) filter. The 
filter is not causal hence cannot model using ARMA. We cannot implement 
the filter because it’s infinite. 
 There is a class of functions called Analytic functions. According to 
Taylor, all the information in the analytical function is at zero, so you don’t 
have to go far. We can express these functions as Lauriant series and model 
them. But for this, the function should be continuous at all points. But our 
perfect interpolator filter kernel is discontinuous at - π/2  and π/2.   
 One interesting observation is that, we are getting zeros at previously 
sampled points in the filter kernel. 
 So to do upsampling faster we can use Multi-channel Polyphase 
Multi-sampler with two filter banks. 

1. 1st filter bank doing nothing (corresponding to already sampled 
points). 

2. 2nd filter bank with half sample delay. 
 
 

UPSAMPLING BY 4 
 Here the filter kernel will look like this: 



 
In this case, we’ll have to predict three new samples, between already 
present pair of samples. We now will have 4-filter banks. 
 
1. Bank with 0 sample delay. 
2. Bank with 1/4 sample delay. 
3. Bank with 1/2 sample delay. 
4. Bank with 3/4 sample delay. 
 
   
PRACTICAL DESIGN OF FILTER: 
  
Use of Linear Phase Filters: 
  For practical design of upsampler filters, we use delayed symmetric 
filters.  
 Zero phase filters are symmetric about zero. Delayed symmetric filters 
have symmetry along a shifted point. They are also called as Linear phase 
filters. The advantage of this approach is the filtering can happen at real 
time. But disadvantage is that the output is not sharp. 
  
Use of ARMA filters: 
 Using ARMA filters, we can get sharper output. But we cannot get 
real time processing using ARMA filters.  
 For offline processing, we can use two ARMA filters, one Causal and 
second Anti-causal filter. Then we just add the outputs and we’ll have 
desired result. The filter kernel of Causal and Anti-causal filters will be just 
the flips of one another. 



 
 
  
DOWNSAMPLING: 
 
 As said, Downsampling is decreasing the sampling rate of a signal. 
Let’s consider a simple case of downsampling a signal to half of its original 
sampling rate. 
 Simplest way to do this is to forget every other sample and we’ll have 
the desired sampling rate. 
 

 
 



But if we reduce the sampling rate just by selecting every other sample of 
x(n), the resulting with folding frequency Fs/2 . The frequency spectrum 
tries to spread up but it cannot do so. Hence it winds up on itself. 

 
 
 
To avoid aliasing, we must first reduce the bandwidth of x(n) to ωmax = 
π/2. So we should cut out high frequency contents to avoid aliasing.     



Filter Design for Down/Up sampling 
 
Last lecture we saw Downsampling and Upsampling techniques which concludes- 
Down sampling 
1.Information is Lost when signal is downsampled 
2.down sampler causes aliasing 
Up sampling 
1.information is NOT lost when signal is up sampled 
2.Up sampler produces Spectral images. 
 
Solutions: 
Down Sampler    
Input Signal is passed through a low pass filter and Band limited to (π/D). 
Then it is downsampled at the rate (Fx/D) where Fx=Sampling rate of input signal 
 
 
Up Sampler  
In Up sampler signal is upsampled at the rate Fx* I and then passed through a low pass 
filter which eliminates the spectral images.(by rejecting all the values above (ω=π/I). 
 
Efficiency in Filter design 
Upsampler 
In a typical Upsampler followed by Low pass filter (LPF) : 
LPF works at the rate of : I*Fx 
But we know that Upsampler inserts I-1 zeros in-between two samples so lots of filter 
coefficients will be zero which implies that I-1 multiplication and addition in the filter 
gives out output zero which is perhaps same as input i.e. upsampled signal). This leads 
some kind of redundancy. 
 
So we come up with next solution 
We can combine the Upsampler and Filter kernel such that input signal is multiplied by 
filter coefficients and then Upsampled to insert zeros (in effect instead of just bypassing 
zeros of upsampled data in filter we first pass each input sample through filter and insert 
(I-1) zeros at the output and combine the result of each sample of input signal) 
Thus now Filter operates at input sampling rate Fx. 
  
Thus reduction in Filter frequency is of 1/I. 
 
Similarly it can be designed for downsampler i.e. by combining the filter kernel and 
downsampler, we first select the Dth sample and multiply it with filter coefficient. So 
filter works at Fx/D where in a typical case it would be operating at Fx. 
Thus reduction in Filter frequency is of 1/D. 
 
 
 
 



USE of symmetric property of Filter kernel 
We can still reduce the multiplications in filtering operation by NOT calculating the  
h(i+M/2)*Xj which will be same as h(i)*Xj (M is size of filter kernel) .Thus  we can 
reduce no. of multiplications by ½.It will also reduce space required for storing these 
multiplications. 
 
Polyphase filter design for Upsampler 
 
If we observe the Upsampling process ,it introduces I-1 zeros thus if filter  
neglects(actually holding I-1 samples) first I-1 inputs from upsampler then we will get a  
output of I samples in next time slot. 
 
Now if M is size of filter kernel (that means it can hold M inputs before giving outputs) 
then in each of next time slot we will get FLOOR (M/I) no. Of NON-ZERO output 
samples, which are then multiplied with filter coefficients. 
We are interested in finding out these NON-ZERO samples. 
Hence we can consider Upsampler as a parallel combination of  I filters which starts 
giving I output samples after first I-1 samples. 
Working goes like this: 
  Assuming M as a multiple of I, in first I samples there are (M/I) non-zero sample output 
which are multiplied with a downsampled version of h(n)(filter sequence) h(0),h(I),h(2I).. 
For next input sample these samples will get shifted (delayed) by one and will still have 
M/I no. of non-zero samples which will get multiplied by h(1),h(I+1),h(2I+1).. 
Size of each such filter bank will be (M/I). 
 
If we observe the first filter bank it is   
   Downsampled original filter kernel h(n) with D=I  
And  
Each such next filter i is downsampled signal of shifted filter kernel h(n+i)  

Where 1<=i<=I-1. 
Thus each filter differs in phase hence called as POLYPHASE filters 
Thus there are I different filters acting on I samples. 
Similar kind of design can be done for Downsampling. 
 
Now I-1  filters work at frequency Fx and Output of each filter is collected at rate I*Fx 
Hence reduction in filter calculations we obtain is  : (I-1)/I 
 
 
 
 
 
 
 
 
 
 



Rational Sampling rate conversion (p/q) 
There are two approaches for doing rational sampling. 
DOWN-> UP sampling 
 Downsampling signal first and then upsampling looses information in signal. 
Since downsampling selects every qth sample and upsampler then inserts p zero the 
output signal do not contain same information. 
UP->DOWN sampling  
Upsampling signal first (inserting zeros i.e. no information loss) and then downsampling 
do not have information loss but signal is aliased. But aliasing can be eliminated by anti-
aliasing filter. 
 
Hence in Rational sampling rate conversion Upsampling is done before Downsampling. 
This kind of sampling can be obtained by cascading two polyphase filters of an 
upsampler and downsampler. 
 
Thus combining the 2 filter kernels of we can get the desired result. 
    
                                      
 
TIME -VARIANT Filters. 
If p/q is the ratio we wanted …then for q inputs we want p outputs… 
 
Getting polyphase filters from filter kernel we just downsample it at rate D=I 
For example let us assume that we want to sample the input at rate 3/2  
 
So when upsampler is followed by downsampler.. 
In upsampler we have filter banks of (h0,h3,h6..) (h1,h4,h7) (h2,h5,h8..) ….. 
So first non-zero output we get is from 1st bank….Second from 2nd bank and so on 
 
When we down sample these stretched signal from upsampler we are interested in non-
zero values of stretched signal only. 
And since we want every second sample to be selected we design the filter using above 
filter banks … 
So combininng effect will be arranging filter banks with gap of 2 as 
(h0, h3,h6..) then (h2,h5,h8..)….. (h4,h7,h10..) and so on 
But we need to take care of the previous coefficient of the filter also.. 
Assuming h(n) is causal i.e. h(n)=0  for n<0 
We get the banks as 
(0,h0, h3, h6..) then (0,h2, h5,h8…)then(h1,h4,h7…) and so on 
 
Following diagram will best show this example 
 
 
 
 
 



 
If u observe the diagram 
 first output sample(4th from left) can be obtained by using filter coefficients 
 h(-3)=0,h0,h3,h6  
 
Next one (3rd from left) can be obtained by h (-1)=0,h2, h5, h8 
Similarly next one (2nd from left) can be obtained from h1, h4, h7,h10 
Same sequence will get repeated after each 6 samples of stretched signal 
 
 
Reduction we get by this is 1/(D* I). 
 
Implementation of 3/2 sampler for 2 channel input can be shown as 



 
 
 
 
 
Real-value upsampling 
Suppose we want to upsample signal by 23.7. 
In this case we can find p and q such that p/q best approximate to 23.7 
But p and q may be too huge to design upsampler OR downsampler. 
Hence method is not always useful. 
Hence we first upsample signal by 23 and use approximation. 
We can use linear filter to find the neighbor sample, which is close to 0.7 and use the 
“error”  in approximation to predict next sample to approximate. 
 
Applications of multirate sampling 
1.speech scaling and speech shifters 
2.compression/decompression algorithms 
3.graphics  
 
 



Filter Banks 
 
Before we do filter banks some other stuff. 
 
Sampling and reconstruction principles are used for designing devices like speakers 
and soundcard. They do reconstruction upto 8khz 
 
 
You can use a hold for reconstruction 
 
 
 
 
 
 
 
 
 
 
 0         ∆t 
 
 Time domain                                                    Frequency domain 
 
 Fig  1 
 
To have this kind of a sample and hold effect 
We need to first stretch and then convolve 
Theoretical view: 
If the signal is like below then the area under the curve is 0 as 5-2-4 have 0 area 
This will result in 0 output 
 
 

5               
            4 
 2 
 
 
 
So what we need to do is to have unit area for 5-2-4.Hence convert them to dirac delta. 
 
 
 
 
       5δ 
  4δ 
 2δ 



 
 
So the effect achieved as opposed to using just 5-2-4 are as follows 

1. the first stretch caused one repeat in the -π/2 to +π/2 domain, but the dirac guys 
cause infinitely many repeats in the infinite freq domain 

2. which will give you a fourier transform kind of a thing 
3. so you have to use a low pass filter kernel to get the original freq response 

 
 
Now the hold circuit shown in figure one is not so good to use 
Mostly op-amps have this kind of a hold effect 
So they use an analog lowpass filter after this 
 
People who actually use this reconstruction technique are mainly LCD reconstruction and 
sometimes for huge T.V monitors 
T.Vs ideally have to use the figure shown below for reconstruction ie this is how the 
phosphors have to get illuminated 
 
 
              
            
 
 
 
 
  
 
But due to the R-G-B funda what they really do is use this for R-G-B each 
 
 
 
 

 
 
  
and due to persistence of vision it actually adds up to the above 
 
 
 
 
 
 
. 



 
So coming back to what exactly is a filter bank 
 
It looks something like this 
 
 
 Narrowband channel 
 
 
 
 Narrowband channel 
 
Broadband signal 
 Narrowband channel 
 
 
 Narrowband channel 
 
 
 
 Narrowband channel 
 
 
Advantages: 
This concept of filter banks is good for the following reasons 
Since you can separate out the narrowband channels its good for analyzing or processing 
complex signals as you can definitely separate them out into many narrowband channels 
which are comparatively simple to process. 
 
It can also be used for voice reconstruction or compression 
Usually when you talk it’s the air that passes the glottis, which produces some kind of 
vibrations in the air which look like this 
 
 
 
 

      
 

 
The mouth cavity acts as a filter kernel for this signal. 
This principal frequency and the overtones are actually your active frequencies. 
Since you do windowing they appear as many. 
These are the only frequencies that u have to actually care about 
So what you can do is use a filter bank and separate out the active frequencies,  



How do you find the active frequencies from the others, which are produced due 
to windowing 

 
After the filtering you will get the frequency response that will look something 

like this 
 
 
 Pick the tallest frequency, this is the active frequency 
 
 
 
 
 
 
 
 
 
 
 

Compression 
Using filter banks for compression of MP3 files 
This is how quantization looks 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

All the red arrows are the error or noise induced due to quantization. If the 
quantization levels are further apart (which means lower no. of bits), the noise will be 
more. But due to the persistence of hearing louder sound masks smaller sounds. 

So if u are quantizing a loud sound u can use fewer levels, in spite of more 
quantization noise and thus have better compression. 

 
But in spite of the loud sound, you may not be able to mask all lower frequencies. 
Like an opera singer may not be able to mask the base voice of Amin Sayani. 
 



 
So if you want to do some kind of compression you could use the following 
 
 
 
               Companding bit stream           
                With white noise     

    Narrowband Filter                                        Decompanding Bit Stream             
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Narrowband filter to eliminate white noise                                         
so you get only narrowband noise 

  
So this is how we are trying to achieve some compression. 
But what we have ended up doing is just splitting the broadband signal into 12 
narrowbands(in case of MP3 sound). This is not enough compression. 
 
A better thing we could do is use a downsampler (where D = 12 in case of MP3) 
Which would look like 
 
 
 
 
 
 
 
 
 
 
 
 
 

Filter Downsampler 

Quantizer 



Quadrature Mirror Filtering 
Now lets take the example of a simple filter bank where we split the signal using a low-
pass and high-pass filter 
  

                                                             
   
 

                                  
 
 
 
 
 
 

                                  
  
 
 
 

 
Now here we are really not concerned with what is happening in the middle layer 

(it could be a quantizer had we been thinking of compression, or anything) 
Now initially the signal will get split into high and low frequencies. But as little of 

the higher frequencies pass through the low pass filter and the same for lower 
frequencies, there is a little smudging (indicated by the green part). 

 
Next, both the downsamplers will cause a stretch in this smudged signal, to give 

the green part in the center. 
 
Now we assume some process operating on this downsampled version of our 

signal, in the middle part, which will cause some smudging/distortion, and also after 
upsampling by 2, we will get a repeat in the signal spectrum. But here the green part, 

* h1 

* h2 

↓2 

↓2 

↑2 

↑2 

* g1 

* g2 



becomes a part of the spectrum, and hence its aliases will actually not be recognizable in 
the signal (although the drawing shows the different colour). The g filters will remove the 
repeat, and the final spectrum is obtained. 

                                                                  X(ω)H1(ω)     X(ω)H1(ω)G1(ω+π) 
 
 
 
 
 
 X(ω)H1(ω)                            X(ω)H1(ω)             X(ω)H1(ω)G1(ω) 
 

 
X(ω) 
 
 
 
 
 
 
 
 
 
 
 
 
                           X(ω)H2(ω)                            X(ω)H2(ω)             X(ω)H2(ω)G2(ω) 
 
  
 
 
                                                                                    
                                                                                         X(ω)H2(ω)     X(ω)H2(ω)G2(ω+π)                    
 
 
The figure above shows the frequency response after every step of the low pass and high 
pass filters. 
 
The red marked areas are the effects of aliasing(the green part which we want to 
eliminate). Just by itself we may not be able to design g1 and  g2 such that the green part 
gets eliminated in the output, its because once you reach the right hand side, you really 
cant differentiate between the smudging and the actual signal.  
However you can make use of the fact that the green part is some high frequency 
component in the upper half and some low frequency component in the lower half. Hence 
we can use the initial high pass filter to remove the high pass component in the RHS, and 
the same applies for the low pass filter. 
 

* h1 

* h2 

↓2 

↓2 

↑2 

↑2 

* g1 

* g2 



We know that the final addition is this, 
 
X(ω)H2(ω)G2(ω) + X(ω)H1(ω)G1(ω) + X(ω)H2(ω)G2(ω+π) + X(ω)H1(ω)G1(ω+π) 
Out of that we need 
 
X(ω)H2(ω)G2(ω+π) + X(ω)H1(ω)G1(ω+π) = 0 
 
Because we want to cancel out the aliasing,  
 
H2(ω)G2(ω+π) + H1(ω)G1(ω+π) = 0 
 
 
G1(ω+π) = H2(ω) 
G2(ω+π) = - H1(ω) 
 
This thing is called Quadrature Phase Mirroring 
 
Now if we have the low pass filter having frequency response H1(ω) 
We know that for the Perfect Alias Canceling high pass filter we need the frequency 
response to just be shifted by π. 
We could write its frequency response as H1(ω+π) 
 
Now a shift of π in the frequency domain is equivalent to multiplying by ejπt in the time 
domain. 
Hence every alternate sample will get inverted (because ejπt will effectively do (-1)n) 
Therefore h2 is same as h1 except for the fact that h2 has every next sample of h1 inverted. 
And since g1 and g2  also depend on the h1 and h2 we only need to design one filter h. 
 
Each of these h1,h2,g1 and g2  need to be linear phase filters, because we cant afford to 
shift the phases of the narrowband signals in the filter banks, we finally have to 
synthesize them into one broadband again. 
Therefore they have to be symmetric filters. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
  h1                                               h2(alternate samples inverted) 
 

 
Even number of samples 
symmetric unsymmetric 
 
 
 
 
 
 
 
 
 
 Odd no of samples 
symmetric symmetric 

 
 
 
 
 
 
 
 
 
 

Therefore we need our linear phase filter h(based on which all h1,h2,g1 and g2  are 
designed) to have odd number of samples. 

 
All this stuff combined together gives us our Quadrature Mirror filtering. 
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Statistical Signal Processing 
 We started by learning about Random Variables. 
 
A random variable X is real valued and is something, which is unknown to us. It is the 
value the variable x would have in the future. It is possible that the event that gives x a 
value has taken place, but till we don’ t know the result, x remains to be the random 
variable X. 
 
Random variables are like a secret (a real value) in a closed box, and we guess what this 
could be, without opening the box. 
 
This guesswork is based on what we call a “belief system”. E.g.: Suppose we wanted to 
guess the outcome of a fair coin toss. Some of us would say that there is an equal 
probability of getting a head or tail. We give the occurrence of head and tail both a 
probability of ½ each because we believe that for some reason.   
 
Since we don’ t know the value of the random variable, it can take any one value from a 
given set of finite values. Such variables are known as Discrete Random Variables. With 
each such value a probability is associated (depending upon our belief system). This set 
of probabilities is the Probability Mass function (pmf). 
E.g. If we throw a dice, 1,2,3,4,5 or 6 can occur each with lets say a probability of 1/6. 
The pmf for this is { 1/6, 1/6, 1/6, 1/6, 1/6, 1/6} .  
 

It is denoted by �X (�), the pmf of the random variable X. It is the probability that the 

value of X obtained on performance of the experiment is equal to �. ‘�’  is the argument of 
the function and is a variable and very different from X.  
Some important properties of pmf 

1. Since �X (�) is probability, 0 ≤ �X (�) ≤ 1, ∀ �. 

2. Σ �X (�) = 1. This true as the random variable will be assigned some  
�                value definitely. 
    

Similarly if we have 2 events, E.g. throwing 2 dice. Then the pmf associated with this 
event (which, is made up of 2 events) is given by what is called the ‘Joint pmf’ . It is 
important to see that a Joint pmf contains more information then the individual pmfs. 
 Consider the example of throwing 2 dice. Suppose the outcome of this event was that the 
1 dice always tries to match the other. If we looked at the die individually, we would 
think that all the values are equally probable and may not realize that they actually trying 
to be equal. 



The joint pmf for this would be 2-D table, with values of dice X on 1 dimension and that 
of Y on the other. 
 
�
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Fig 1: Joint pmf of 2 die when they are thrown such that 1 always tries to match the other��
�

Like this we can have the joint pmf of ‘n’  random variables, which would be an N 
dimensional table. The joint pmf for 2 random variables can be written as 

�X, Y (����), the probability that X=x and Y=y. 

 
 
In terms of closed boxes joint pmf means that we have 1 big box containing 2 boxes with 
X and Y inside them. Opening the big box means opening the 2 smaller boxes 
automatically and the joint pmf is the label on the big box. 
 
Suppose, if we had to open only one of these boxes say X, then we can find the pmf for Y 
from the joint pmf as below. This is called the ‘conditional pmf’  and is read as the pmf of 
Y given X equal to ‘x’  
 

 �Y|X=x (�) = �X, Y (x���) 

     Σ �X, Y (x���)      
                           �  
 
Suppose given the joint pmf of X,Y, we want to find the pmf of X. This is like saying we 
don’ t care about Y at all i.e. given the joint pmf we want to find the individual pmfs. This 
is called the  ‘Marginal pmf’  and is found as  

�X (�) =    Σ �X, Y (x����)  
               ��
�
�



�
Pmf is possible in the discrete domain, but for continuous domain, the random variable 
can take a value from infinite values. Thus for continuous valued random variables we 
define the Probability density function (pdf). It is the ratio of the probability of the 
domain to the measure of that domain and at a point it is the limit of this ratio as the 
measure tends to zero. 
 
E.g. We have a dart board, and want the probability of hitting a point on the board. In the 
1-dimensional case, the measure would be length and the pdf could be shown as below. 
 
 
 
 
      Probability 
 
 
  Measure 
 

It is denoted as ƒX (�). 
 
The pdf satisfies the following properties 

1. ƒX (�) > 0 , ∀ � . 
2. The area under the curve must be 1 i.e 

� ƒX (�) dx = 1 
��

 
Suppose we have lumped and continuous probabilities together like in the regulator of a 
fan. We have lumped probability at the standard fan speeds, but continuous between 
them. This can be shown by dirac delta functions in the pdf as shown below. 
           
           
           
            
       
 
 
Expected value of a random variable X 
 
            This is the expected value of - the average value of X over all the possible futures. 
In other words, if we could perform an experiment ‘n’  times to find the value of X, then 
the mean of all those values would be the expected value of the random variable X.  
Mathematically, Ε[X] the expected value of X is  

  



Ε[X] = Σ �X (�) ��� � ���
��������������������
�

Ε[X] = � ƒ X (�) � dx      (ƒ X (�) dx is the probability of �� 
������������������ 
 
Linearity of expectations  
 
Ε[X+Y] = Ε[X] + Ε[Y] 
 
Proof: 

Ε[X+Y] = � � (�����) ƒ X,Y (���) dy dx       
�������������������������������������
�

��� � � ƒ X,Y (���) dy dx  +    � �  � ƒ X,Y (���) dy dx 
�������� � � � ���������� �
�

��������� � � (ƒ X,Y (���) dy) dx  +    � � � (ƒ X,Y (���) dx) dy 
����������� � � ���� ������������������� �

 
     =�� �  ƒ X (�)  dx  +    � ��ƒ Y (�) dy 
���������� � �����������������
�

������Ε[X] + Ε[Y] 
�

 
Also, if we have a function g(X) (i.e. a function which depends only on X), then  

Ε[g(X)] =  Σ �X (�) g(x) 
��������������������������
�
 
This can be seen from the fact that, 

������ (g(x))=  Σ   �X (�)  
�����������������������������������

 
 
Estimators of X 
       We want to predict the value of X, such that the expected value of the mean square 

error is minimum i.e. Ε[(X-a) 2] is minimum, where a is the estimated value of X. 

Ε[(X-a) 2] = Ε[X 2] – 2a E[X] + a2 



 
Differentiating w.r.t to a 

– 2 E[X] + 2a = 0 
     a = E[X] 

The value of ‘a’  comes out to be Ε[X]. This is the best estimator for X, which is the 
expected value of X itself. 
 
Suppose we had the Joint pdf of X & Y. Now, if we open the box for Y, we can predict 
the value of X given Y=y.  
 
From above we observe ‘a’  will be, 
 

a = E[X | Y = y] (the centroid of the row with Y=y) 
 

Thus ‘a’ is a function of y. This again is the best estimator of X given Y, and ‘a’  can be 
any function of y such that the cost is minimum. 
 
If we had to restrict ‘a’  to be only a linear function of Y, then we would be basically 
trying to minimize E[(X –aY) 2] and ‘a’  comes out to be 

 
 a = E[XY] 
    
       E[Y 2] 
 
We notice that this expression is the exactly the same as that for – the scalar ‘a’ , when 
two vectors y and x are given and we want to fit them together (we would scale one of 
them by a the scalar ‘a’ ). 
 
We realize that random variables are vectors. They can be scaled and added just like any 
two vectors and the above expression enforces this fact. 
 
What remains to be seen is why would we want a linear estimation for X as opposed to 
the best estimation. 

1. One reason is that it is mathematically simpler. 
2. A lot less data is required for the linear estimate than for the best estimate. For the 

linear estimate we just need E[XY] i.e. is covariance of X & Y (if X , Y are zero 
mean) whereas for the best estimate we need the entire joint pdf. 

3. In a lot of cases, the linear estimate is the best estimate, so basically it is good 
enough.  
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Random Processes

30th March 2004

Summary of the lecture

We defined the term random process.

We said that we want to predict it, using something called a Wiener filter.

We defined a class of random processes, called stationary random processes, that are especially
suited to Wiener prediction.

We defined filtering of a random process, and discussed what happens to a random process when
it is filtered.

We defined the power spectrum of a stationary random process.

Random Processes

A random process is a sequence of random variables.

Usually we look at this sequence as time-ordered. Suppose there is this guy with nothing else
to do, tossing a coin every second. Associated with each time t, there is a random variable—the
result of the coin toss. Before he starts tossing coins all the results are unknown and therefore
random variables. At time tn, the nth random variable is “opened”.

Because there are infinitely many random variables in a random process, the PDF is not defined
as an infinite dimensional table, but by defining the PDF of every finite subset of the sequence.
So there are (infinitely many) finite dimensional tables now.

Prediction of Random Processes and Stationarity

We are interested in random processes because we can use them to model things like speech, and
then use this model for compression.

The idea of compression is to predict the next outcome of a random process, and then transmit
only the error between the actual outcome and the prediction. If our prediction is good, the
error will have much less energy, so fewer bits have to be transmitted.

One method of prediction, called Wiener prediction, is to predict an outcome by a linear combi-
nation of the previous n outcomes. The coefficients in this linear combination must be constant
numbers—we can’t change them for every prediction.
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Consider what Wiener prediction does:

a
a

a 01

2 a
a

a 01

2

Random variables:

Outcomes :

Predictions :

Figure 1: Wiener Prediction

Shown above are two predictions. Each uses the previous three outcomes, weighted by the same

numbers a0, a1, and a2.

What kind of processes are suitable for this kind of prediction ?

The a’s depend on the joint PDF of the random variable being predicted and the one being used
for the prediction. So the suitable processes are ones where any random variable Xn has the
same joint PDF with the previous three random variables Xn−1, Xn−2, and Xn−3.

Such a process is called stationary of order 3. In general you can have a stationary process of
order L, where the joint PDF of Xn and Xn−i is same for all n for each i <= L.

If a process is stationary of order L it is stationary of all orders less than L. A process that is
stationary of all orders is called a strict-sense stationary process.

Strict-sense stationarity is a very restrictive. Not many real life random processes are strict-sense
stationary. Instead, a wider restriction can be made on the random process. Instead of saying
that the entire joint PDF of Xn and Xn−i should be same for all n, we will merely say that
E[XnXn−i] should be same for all n.

Such a process, where E[XnXn−i] depends only i, is called a wide-sense stationary process.

Henceforth when we say “stationary process”, we will mean “wide-sense stationary process”.

The auto-correlation function

Define
γxx(i) = E[X0Xi]

Properties worth noting:

1. γxx(i) = γxx(−i). (Because E[X0Xi] = E[XiX0].)
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2. γxx(0) is the variance of X0 (or any Xi, because they all have equal variance).

3. γxx(0) ≥ γxx(i), ∀i. (Because nothing can be more correlated with a random variable than
that random variable itself.)

4. If γxx(0) = γxx(k), then γxx is periodic with period with k.

Filtering of Random Processes

Take a random process x, convolve it with a filter f , and you get another random process y.
Going to the analogy of closed boxes, this new random process consists of boxes which when
opened cause some boxes in the original process to be opened and added up using the gather
kernel.

x

f

y

Figure 2: Filtering a random process makes another random process

If x is strict-sense stationary, then so is y.

Define a white noise process as one in which all the variables are uncorrelated. The autocorrelation
function looks like the Kronecker delta:

γxx(i) = δ0(i)

If x is white noise, what is kind of process is y ?

For example if f is of order 3:

Y0 = f0X−1 + f1X0 + f2X1

Since the E[XiXj] = 0 for i 6= j,

E[Y 2

0 ] = E[f 2

0 X2

−1 + f 2

1 X2

0 + f 2

2 X2

1 ]

Therefore:
γyy(0) =

∑

i

f 2

i

Next,
E[Y0Y1] = E[(f0X−1 + f1X0 + f2X1)(f0X0 + f1X1 + f2X2)] = f0f1 + f1f2

3



Therefore:
γyy(1) =

∑

i

fifi+1

Similarly,
γyy(j) =

∑

i

fifi+j = rff(j)

And so y is wide-sense stationary.

Now consider what happens if x is wide-sense stationary. We will prove that y is wide-sense
stationary and find a relation between γyy, γxx, and rff .

Consider an example f of order 3.

Then:
E[Y 2

0 ] = E[(f0X−1 + f1X0 + f2X1)(f0X−1 + f1X0 + f2X1)]

γyy(0) = E[Y 2

0 ] =
(
γxx(0)

∑

i

f 2

i

)
+

(
γxx(1)

∑

i

fifi+1

)
+

(
γxx(−1)

∑

i

fifi+1

)
+ ...

Next,
E[Y0Y1] = E[(f0X−1 + f1X0 + f2X1)(f0X0 + f1X1 + f2X2)]

γyy(1) = E[Y0Y1] =
(
γxx(1)

∑

i

f 2

i

)
+

(
γxx(0)

∑

i

fifi+1

)
+ ...

We can see that :
γyy = γxx ∗ rff

In the Fourier domain this is:

Γyy = Γxx ◦Rff where ◦ denotes pointwise multiplication.

But since rff = f ?
←−
f , so Rff = F ◦ F̂ = |F |2. So,

Γyy = Γxx ◦ |F |
2

Γxx is called the power spectrum of x.

4
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Lecture 14: Stationarity and the Innovations Process 
Date: 30th March 2004 
Scribed by Aditya Thakur 
 
Why is noise ‘white’? 
 
Most noise is from 'seemingly' independent processes. 
eg. The 'hisss' sound caused due to turbulent flow of air seems to be made by independent 
particles though they are interacting with each other. The same can be said about the 
weather. 
So basically two samples may be chaotically related with each other, giving us the 
impression that they are actually doing something 'new' every time (i.e. random). 
 
Another important source of noise is Electron noise. 
There are 2 basic types of e- noise: 

1. Ensemble noise: the buzz of the e- 
2. Shock Noise1: which is a random point process 

 
Why does some noise get colored? 
 
Basically, noise gets coloured due to filtering (as we saw in the previous lecture). So what 
sort of filters are we talking about here? 
Let us look at a signal passing through the conductor... 

• We have the white noise due to e- 
• Then you have the distributive capacitance which acts as a high/ low pass filter 

depending on current/voltage. 
• And of course, you have the induction wall interference2 (multipath conduction) 

which causes symbol distortion (overtaking of symbols). We saw this with respect 
to fibre optic cables, where different wavelengths used to take different paths and 
suffer different reflections on the walls of the cable. 

 
So these filters acting on the white noise produce enough correlation to give the noise 
‘colour’. 
 
 
Innovations! 
 
What we will show now is that given a stationary random process Y having correlation 

YYγ , we can get a causal, stable filter f  such YYγ = ffr . 
What this implies is that we can take a white noise process, filter it with f  to give it the 
same colour as Y. 
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Figure1: A white noise process when filtered gives the coloured process 
 
If 1−f  exists, passing Y through 1−f we get an uncorrelated process Q, which will have 
the same information but has lesser energy. By having the same information, we mean 
that we can get Y back from the Q. 
  
 
So how do we filter  a stationary random process Y to get an uncorrelated process? 
 
 
 
 
                      a3       a2      a1 
  
 
 
 
Figure2: L inear  prediction of X using Y. ,...,, 321 aaa are the filter  coefficients. 

 
Well, if we do linear prediction, then the error we get is orthogonal to the signal used to 
estimate it. Lets use this fact and see what we can do: 
 
 
 
              -a3      -a2    -a1     1 
    
 
 
 
 
 
Figure3: The filter  which gives the er ror  cor responding to the optimal linear  prediction 
 

Y 

X 

Q 

Y 

q1 q2 q3 

f  

White noise process 

Coloured process 
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Looking at the above figure, we see that  

1. q1 is orthogonal to all the blue ys and thus to all vectors in the subspace of the 
blue ys.. 

2. q2 is a linearly dependent on the same blue ys. And hence lie in the subspace of 
the blue ys.  

From 1 and 2, we see that q1 is orthogonal to q2 (and similarly to q3, q4, …). 
 
Tadaa! We have Q, our uncorrelated process got by filtering Y. Q is often called the 
innovations process generating Y. 
 
The filter ,...,, 321 aaa is called the Wiener filter , and is the optimal linear prediction 

filter. 
The filter ,...,,,1 321 aaa is3 the Whitening filter , and is the prediction error filter. 

The inverse filter would be called the Colour ing filter . 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure4: Innovations representation of WSS process 
 
Now what we have to show is that this Q exists for all stationary random processes i.e. 
the wiener filter exists, is causal and stable. 
 
Before we go on to that, lets look at the applications of the existence of such a 
whitening filter  f .  
Suppose you have a speech signal to be transmitted. You pass it through a whitening filter 
to get the uncorrelated signal. Now you only send the filter coefficients across. 
At the other end, you take an ‘equivalent’ white noise process, pass it thorigh 1−f to get 
the original speech signal. This may sound (no pun intended) a little fuzzy, but what they 
would do is model the innovations process of all speech signals in some way and use it; 
also the human ear is quite tolerant so the reconstructed speech signal would pass off as 
the same signal. 
 
 
 

1−f  

f  

Coloured process White noise 
innovation 

Colouring filter 

Whitening filter 
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Anyway, getting back to the proof: fs 
Given ffr , we can find the filter  f  having that autocorrelation (where ffr is YYγ ). 

 
We are given4 

ffrff =
�

*  

 
Taking Fourier transform 

ffRFF =  

 
Great! We have the magnitude. If we put any phase, we’re through! 
Not quite. 
We have shown that we can get the filter f , but our main goal should be to get a causal 
stable filter whose inverse filter exists and is also causal and stable. 
 
Taking logarithms on both sides,  

ffRFF logloglog =+  
 
If, 

qq

jrq

jrq

req j

loglog

loglog

loglog

=∴

−=
+=

=

α
α

α

 

 
Using the above result, 

ffRFF logloglog =+  

 
Let 

 
SR

GF

ff =
=

log

log
 

SGG =+  
 
Taking Inverse Fourier transform 

sgg =+   
 
We can see that s is symmetric 
Let us take g to be the positive half of s. 
 
What we will now show is that if g (called the cepstrum) is causal, then so is f . 
We will assume that G is analytic and is expressed by the Laurent series 
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...2
210 +++= zgzggG , 

which form the Fourier transform coefficients of g. 
 
 
Now, 

=F antilog G  
 
This implies that F is also analytic and can be expressed as 

...2
210 +++= zfzffF  

 
So ,...,, 210 fff is the sequence that has F as its z-transform, which is the required 

causal filter f . 
Further, G being analytic also implies that f is a minimum phase filter, which implies 
that if f is a rational function of z, then it has a stable and causal inverse. 
 
 
 
 
 
 
 
 
 
                                                           
Udayan’s notes: 
1 “Shot Noise” 
2 “Inter symbol interference”!!! 
3 �,,,,1 321 aaa −−−  

4 The symbol f
�

 (read “ f flipped”) stands for the time-reversed f . )()( nfnf −=
�

. 



Weiner Filtering 
 
WHAT IS AR RANDOM PROCESS? 
 AR process is a stationary random process whose coloring filter is 
Auto-Regressive(AR). Thus the present output is a linear function of 
previous outputs plus some innovation. The innovation can be white noise. 
 

 
AR(p) denotes a filter with ‘p’ poles for the corresponding AR random 
process. An AR(p) filter will have corresponding MA(p) inverse or 
whitening filter.  
 Now even though, we have infinitely long auto-correlation filter. But 
its corresponding de-correlating filter is finite. 
 
POWER SPECTRUM ESTIMATION: 
  
What is this? 
 Power spectrum estimation means estimating the Fourier Transform 
of auto-correlation function. 
 
Why? 
 At a time, we’ll have only finite samples of a random process in hand 
and we’ll have to estimate the power spectrum from that may be for some 
prediction. 
 
 
 
 



Ways of Power Spectrum Estimation: 
 

1. Finding the auto-correlation function of the random process and 
taking its Fourier Transform. 

2. Directly estimate the power spectrum. 
3. First, we find the whitening filter. Then we invert it to get the 

corresponding coloring filter. From the coloring filter, we find the 
auto-correlation function of coloring filter which is the auto-
correlation function of the stationary random process. In many 
applications, we don’t have to go back to power spectrum from 
whitening filter. We can get Weiner filter directly from the 
whitening filter. 

4. Estimate Reflection coefficients of lattice filter. 
 
 
METHOD: 
 We have outcomes and we have an AR random process. We trying to 
estimate the coloring filter for this process provided order ‘p’ is known. 
We can do this using Least Square Deconvolution. 
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 We’ll estimate using MA filter. But as input x and output xadv are 
same. It is actually an AR filter. 



 
AR coefficients = MA coefficients 

 
Now we want best estimate with whatever samples we have in hand. 
Suppose, we have 25 samples viz x0….x24, then we’ll get nice estimate 
for the 1-step correlation i.e. correlation between x0 and x1, x1 and x2 ….. 
and so on till x23 and x24.  This is because we have 24 pairs for the 
interval of 1. But for 23-step correlation value, we have just two pairs x0 
and x23, x1 and x24. Thus more no of samples means better estimate. 
 So for LMS, we give x, xadv and xbackward to increase the no of samples. 
This is valid because stationary random processes look the same from 
backwards.  
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Here a1,a2,a3,a4 are the coefficients of prediction filter. We can get 
whitening (prediction error filter) filter by putting 1 in present sample 
and negating previous coefficients. 
 

 Consider Z-domain, 
 Here the prediction filter will be- 
 a1z

-1 + a2z
 -2  + a3z

 -3 + a4z
 -4 

  
  
the prediction error filter will be – 



1 - a1z
-1 - a2z

 -2  - a3z
 -3 - a4z

 -4 

 
the corresponding coloring filter will be – 
 
   1 
  1 - a1z

-1 - a2z
 -2 - a3z

 -3 - a4z
 -4 

 
flipped coloring filter will be- 
 
    1 
  1 - a1z 1 - a2z 2 - a3z 3 - a4z

 4 

 
We have to convolve these two filters to get the power spectrum in 
rational form. Convolution will be Multiplication in z-domain. 
 
So the rational function for power spectrum will be- 
      1 
  (1 - a1z

-1 - a2z
 -2 - a3z

 -3 - a4z
 -4 )(1 - a1z 1 - a2z 2 - a3z 3 - a4z

 4) 
 
MA Processes: 
 For these processes, coloring filter is MA so corresponding whitening 
filter will be AR. 
 
ARMA Processes: 
 For ARMA processes, both coloring and whitening filter will be 
ARMA with poles and zeros interchanged between them. 
    
 
WEINER Filtering: 
 Weiner filtering is estimating a random process from few other 
random processes. Prediction is a special case of Weiner filtering where 
same random process is estimated in advance from previous samples.  
  
Jointly Stationary Random Processes: 
 X and Y are said to be Jointly Stationary Random Processes if and 
only if- 
1. If X is a stationary random process. 
2. If Y is a stationary random process. 
3.  If the cross-correlation rxy(k,l) depends only on the difference (k-l). 



 
Jointly Stationary Random Processes X and Y 

 
In the above figure, we can see two jointly stationary random 

processes X and Y. The correlation values shown by same color are 
equal. So we can see that X and Y are independently stationary plus their 
cross-correlation is also same for same interval. This makes them Jointly 
stationary random processes. 
  If two processes are jointly stationary, then we can design the Weiner 
filter for them. 
 
FIR Weiner Filter: 
 If we have two jointly stationary random processes X and Y and we 
want to predict Y from the samples of X. We now have auto-correlation 
of X and cross-correlation between X and Y. 
 Here 
  The auto-correlation of X is given by- 
   E{x(n-l)x*(n-k)} = rx(k-l)  

 
The cross-correlation of X and Y is given by-  
 E{y(n)x*(n-k)} = rxy(k) 
 
Now if ‘w’ is the Weiner filter response, we have- 
 w * rxx = rxy  
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so 
 W = E[XXT] -1 E[XY] 
 
 
Causal IIR Weiner Filter: 
 Now we want to design a causal IIR Weiner filter for prediction of a 
random process Y from samples of another random process X. 
 

 
 
 We first calculate W which is filtered version of X. W is the 
innovation process of X. Now X and Y are jointly stationary, hence W 
and Y are also jointly stationary. 
 Now we have cross-correlation of X and Y. But we need cross-
correlation of W and Y. 
E[wk-i yn]  = E[ (xn-ih0 + xn-i-1h1 + xn-i-2h2 + ….) yn] 



  
   =   h0 E[xn-i yn] + h1 E[xn-i-1 yn] + h E[xn-i-2 yn] + ….. 
 
rwy(i)   =   h0rxy(-i) + h1rxy(-i-1) + ………. 
 
rwy  = h * rxy 

 

q(i) = E[W(n-i)y(n)] = rwy(-i) 
 
 as we want causal filter only, 
q  = [flipped rwy]+ 
 = [(flipped rxy) * (flipped h) ]+ 
 
h*q = h * [(flipped rxy) * (flipped h) ]+ 
 
Here h and q both are causal so even (h * q) is also causal. 
 
UNREALIZABLE Weiner filter (Non-Causal): 
  

 
Non-Causal Weiner Filter 

 
 Here we have all boxes( analogy!) open. So we know all samples of 
X. So now comapared to previous case of causal filter, we have 
 
 
      q  = [flipped rwy]  
 

h*q = h * [(flipped rxy) * (flipped h) ] 
 
h*q = h * (flipped h)* (flipped rxy)  
So in Z-domain – 
H(z)Q(z)  = Rhh �yx  
    



 let ‘g’ be inverse filter of h. Then Rgg will be auto-correlation of X. 
= �yx / Rgg  
 

H(z)Q(z)= ����yx /  ����xx 
 

 

 

Weiner Filtering for noise removal: 
 
 

 
  Removal of noise from the past samples is also called 
smoothing.  
 
E[XtXt-i] = E[(yt +Nt)(yt-i+Nt-i)] 
 
  = E[(yt yt-i)] + E[(Nt Nt-i)] + E[(yt Nt-i)] + E[(yt-i Nt)] 
   
 rxx(i) = ryy(i) + rNN(i) + ryN(i) + rNy(i) 
 
Now last two terms are zero cause noise is most of the times un-
correlated with signal  Y. 
 If noise is white noise, then rNN(i) is a delta function. 
E[YtXt-i]  = rxy(i) 
  = E[YtYt-i] + E[YtNt-i] 
 
 rxy(i) = ryy(i) + ryN(i) 



 
 
 
 
                                                  Power Spectrum Estimation 
 
 
 
There are basics representations of signal which can be converted to other one in different 
ways. 
 
                   Auto-correlation                Power density function 

γ Γ 
 
 
 

   a         κ 
                  Coloring Filter coefficients             Reflection coefficients 
 
Methods to find Time–Average auto-cor relation function 
Unbiased estimation method 
Here we partly open the boxes and find the auto-correlation such that 
   

         Ε [XnXn-i] =    A  XnXn-i 
            n 
     

 =         1           Σ Xn Xn-i                                  n going from i to N 
          N – i   
                    2 

Here variance is   Ε  ([1st term –2nd term]) 

Since there are few data points for larger lags we have more variance at larger lags. 
 
Biased estimation method 

         Ε [XnXn-i]   =         N - i     Ε [Xn Xn-i ]         n going from i to N 
                     N    

 
This is similar to windowing signal (auto-correlated) with a triangular window and doing 
average. 
Less variance than unbiased estimate. 
 
 
 



Relationship between Energy, Power spectrum and Periodogram. 
 
 
Periodogram is Fourier transform of average (windowed) auto-correlation function. 
Expected value of Periodogram is Power spectrum. 
 
So by averaging Periodogram we get the Power Spectrum of signal. 
Also in direct method by taking Fourier transform of auto-correlation function we can get the  
Power spectrum. 
 
Auto-correlation gives the energy spectrum. 
 
 
Non-parametric methods for Power Spectrum Estimation 
 
1. Bartlett Method 
       In Bartlett method we divide the signal into blocks, find their periodograms and average  
them to get the Power spectrum. (The data segments are non-overlapping). 
The final effect is true power spectrum convolved with a window. 
Due to windowing (leakage frequency due to side lobes) the frequency resolution is low. 
 
2.Welch Method 
    It is same method than above with some modifications – 

I) Data segments can be overlapping. 
II) Window the data (signal) before computing Periodogram (we may use different 

windows for each segment) 
This method has got better precision but less frequency resolution than Bartlett method. 
 

3. Blackman-Tukey Method 
    In this method we windowed the auto-correlation sequence and take Fourier transform to get 
power spectrum estimate (Periodogram) in effect we smooth out the Periodogram. 
It has better variance (even at large lags) and better precision than above two methods. 
But frequency resolution is less than the others. 
 
Parametric method for Power Spectrum Estimation 
Theme: 
In these methods we assume that signal is output of a system having white noise as an input . 
We model the system and get its parameters i.e. coloring filter coefficients and predict the 
power spectrum. 
 
Yule-Walker method 
We estimate the Auto-correlation. then we find the ‘a’ s coloring filter coefficients which are 
model parameters. 
To find the ‘a’s we use Levinson-Durbin algorithm. 

From these a’s we again find the γ and then Power spectrum. 
 



Burg Method 
 
 
We have seen the lattice filter equations for forward and backward prediction error filters. 
 
 

Q5(n) = Q4(n) -  κ4R4(n-5) 
 

R5(n) = R4(n-5) -  κ4 Q4(n) 
 

 
 
Q is the error quantity (least square). 

So if we minimize the error by selecting κ we can model the ‘a’s 

For that we predict the κ1 and using this we find other reflection coefficients using same 
lattice structure. 
Using Levinson-Durbin algorithm we model the system and find the ‘a’s from which we 
can get the power spectrum estimate. 
 
 

Predict :       κ1 =(autocorrelation of x(n))/(energy in x(n)) 
                   
And we can find the  
   

              κ4 =   - <R4 delay 5,Q4> 

                                  < R4, R4> 
 
Using property that forward and backward coefficients are the same one  
 
 

         κ4 =   - <R4 delay 5,Q4> - <Q4 ,R4 delay 5> 

                                  < R4, R4>  +     < Q4, Q4>   
 
Thus we can find R1 and Q1 from K1…then K2 from R1 and Q1 …then K2 and so on… 

From κ’s we find a’s and the Power spectrum. 
This method has higher frequency resolution and computationally efficient. 
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