Advanced
DSP

L ectures by
Udayan Kanade
Aditya Thakur Amit Hadke
Kanika Nema Prateek Saxena
Ravi Ramaseshan Sameer Dhavale
Soam V asani Umama Khilawaa

Tanmay Dharmadhikari




Advanced Diqital Signal Processing: Lecture 1

Lecture date: 9-1-2004

Lecturer: Udayan Kanade . email: udayan@codito.com

ADSP Mailing List: adsp@codito.com

ADSP web site: www.codito.com/udayan/~adsp/

Acknowledgements: Aditya Thakur

Convoluted Ants:

We first solved the problem of “communist ants’ : given 2 ant hills, each having some
amount of sugar, the ‘richer’ ant hill gives 10% (arbitary communist rule) of the
difference between the sugar levels to the other ant hill.

If we assume that the 2 hills can communicate and let each other know of their resp.
sugar levels, the the solution is obvious: the hill with more sugar calculates the difference
using the *arithmetic ants' and sending it to the other hills.

Assuming the ant hills can’t communicate (because say, the hills are a great distance
from each other) or the *arithmetic ants' have gone on vacation ( hence the difference
cannot be calculated), brings us to the more interesting solution ( suggested by the *dsp
ants') . If each ant hill sends 10% of its sugar to the other hill, then the problem is solved.

Example: A B
Origina: 20 30
Amount sent: 2 3
Final Amount: 21 29
Yippeeee!!

This can be generalized to ‘n’ ant hills, each ant hill have ‘m’ neighbour hillsand a
corresponding rule to distribute sugar to each of its neighbours.

We immediately notice that this method is “scatter convolution”. Wow! , atrue natura
wonder (recent reportstell usthat the *dsp ants' were handsomely rewarded).

Taking a hint from their communist friends, the capitalist ants also devised asimilar
solution for their problem: each ant hill is supposed to steal from its neighbour hill.
Thus, each hill goesto its neighbour hill and steals a certain amount (governed by the
capitalist rule) and collects and adds all the loot at the end of the day.

From thisanalogy it is easy (and fun) to see that the scatter and gather are equivaent if
we ‘flip’ the kernel (extra brownie points for anyone who finds the origin of the word



‘kernel’) i.e. suppose the communist ants give 10% to left hill and 20% to right hill and
keep the rest, thisis equivalent to the capitalist ants stealing 10% from their right hill and
20% from their left hill.

Properties:

Next we reviewed some of the properties of convolution using the ant anal ogy:

1) Commutative: If we swap the communist rule with the original sugar amounts and
perform the same scatter operation, then the result obtained will be the same.
This point brings us to the reason why the scatter approach is used to define
convolution: the scatter convolution is commutative as opposed to the gather.

A non-rigorous proof for the latter follows:
Assuming that scatter operation is commutative and represented by *,
We provethat the gather operation (represented by #) is not.

A#B = A * flip(B)
flip(B) * A
flip(B) #flip(A)
1= B#A

QED

2) Associative: Suppose we use rule B on the first day and then apply rule C to the
result obtained , the final result obtained at the end of the 2™ day is the same as
using the dsp antsto apply the rule B to rule C on the 1% day and then applying
this combined rule to the original amount on the 2™ day.
i.e. (A*B)*C = A*(B*C) where A is theorigina amount.

Combining thefirst 2 rules allows us to write the expression A*B*C or B*C*A

(or any such permutation) and they all represent the same result. Thisaprime

example of mathematical symbols hiding the beauty of the underling operation.
3) ldentity: Theidentity in this caseis each ant hill keeping all the sugar for itself.

4) Linearity: k(A*B) = kA*B and A*(b+c) = A*b + A*c
Strength Matters!
We define the strength operator on a vector as

S(A)=3a

Things you need to know about strength:



1) It'safield.

2) It'sascaar function (maps avector to ascalar).

3) It'slinear.

4) Itisn't shift invariant. Thisis because for an operation to be shift invariant
both the input and the output should have the same number of components.
In the case of the strength operator, since the output isascalar, it’s not shift
invariant.

5) Strength Theorem:

S(f*x) = S(f) S(x)

This shows usthat if the kernel addsto 1, then the convolution operator
conserves strength.

But if thisnot true, say the kernel strength islessthan 1 (to compensate for
loss during the transportation of the sugar due to hungry ants), then after the
scatter operation the strength of the resultant sugar will be less than that of the
original , and the strength theorem tells us how much was the loss.

When convolution goes bad: see deconvolution (seedy convolution!) :

Deconvolution is when, given the signal and the output, we have find out the response of
the system or equivalently given the output and the response of the system, we have to
figure out the input.

Real-world applications of deconvolution:

Examples when you are given the output and the response:

1) givena‘blurred’ image, you obtain the blurring kernel, and using deconvolution,
get the original un-blurred image. Such atechnique is commonly used to correct
the defects (due to the curvature) in telescope lens.

Examples when you are given the output and the inpuit:

2) Preand post equalization is used in the telephone system to compensate for the
distortion caused by the noise in the channel (found out by using deconvolution) .

3) To compensate for the response in large theaters the sound output is modified.

4) Deconvolution can be used to get better quality pirated VCDs!!



Example showing procedure for deconvolution:

Output : 510201005020 10
Kernel: 0.10.80.1

Assuming that the system is causal,

5=0*0.1+0*0.8+0.1* x =0.1*x
Thus, x0 = 50.

10=0*0.1+0.8*x0 + 0.1*x1 = 0.8*50 + 0.1*x1
x1=10-0.1*x1 - 0.8*x0 = -300

Generalizing,

x = y-f D(x)

wherey isthe current output,
f isthe kernel function
D(x) isdelay x

Taking Z-transform ,
X=Y-z'"FX
X=Y/@A+Z'PF

This equation shows us that deconvolution follows the feedback network.

Further given a FIR convolution system the corr. deconvolutionisasimple IR system
(al pole system) with the zeroes getting mapped to the poles.

Thus, though a FIR system is stable, itsinverse IR system can be unstable if the pole lies
outside the unit circle.



Types of Filters

We saw three types of filters, viz. MA, AR, and ARMA. These do not include the entire class of
filters but cover an important class of filters and are very useful.

For linear systems where output y(n) is related to the input x(n) by the difference
equation:

Y+ g y(n-K) = D F,x(n=k)

We considered three cases:

1. Moving Average Filters (MA)

In this case, the linear filter,

isan all-zero filter and the difference equation for
thelr input-output relationship is

Y(K) =X+ foXeq + fiX o+

Note: The strength of these filters may not be 1

2. Autoregressive Filters (AR)

Xo X1 X2 X3
In this case, the linear filter,
isan all-zero filter and the difference equation for
thelr input-output relationship is
1
Y(K) =X + 9oV + 91 Vip +-oe % 9 %
Yo Y1 Yo V3



AR Filtersarelinear shift invariant systems

Refer to previous AR filter figure.

Using the figure we can calcul ate the expressions for yp, yi...
Yo = %
yl = Xl + gOXO
Y, =% + 0% + (9o + 1%
Y =%+ 9% + (9o +9)% *(do” +29,0; + 9,)%
This can be seen as
Y=XLF
F=L gy (90" +9) (9 +208; +,)--.
By looking at the difference equation of AR filters we observe that yy is described in terms of

k and does not refer to any particular value of y or X. Hence we can say that AR filters are
shift invariant

To show that AR islinear, we have to show that

X S X
y S y

Let us superimpose the blue and red AR systems as in the figure below and finally add up the
two resultsin Z,. We can look at the AR system as containing the summation element %, the
delay elements z* and the multiplying el ements g.




Let us denote, for convenience, 2, as ablack filled circle.

Add (Z,) before the addition (Z,) or after, it doesn’t make a difference...
y

Add (2,) before the multiplication (g«) or after, it doesn’t make a difference...
Xy

Now, for each of the three 3, we have the following:

Next three figures for the 2, before g,
Among the next three, the 2" and 3" for the =, before g,

Among the next three, the 3" for the =, before go
At each step we combine the %' s between the delay elements
Add (Z,) before the delay (z%) or after, it doesn’t make a difference...

Xy




Another way of showing AR filters as linear is by induction.

Yo = Xoforms the basis of the induction hypothesis

Let us assume V.1, Yk-2,... to belinear

Yk isdefined in terms of xx and Yi-1, Yk-2,... inthe AR filter difference equation.

Since X isjust added and the y terms are multiplied by constants, we can say that yy is aso
linear.

Hence AR filters are linear systems.



3. Autoregressive, Moving Average Filters (ARMA)

In this case, the linear filter,
H(z) H )_
G(2) G(2)

is an pole-zero filter which has both finite poles and zeroes.
ARMA filters are basically cascaded MA and AR filters.

There are 2 types of ARMA filters:

Typel(MA - AR) Type2 (AR - MA)
Xo X1 X2 X3 Xo X1 X2 X3
1
o2
fo 1
1
97) O1 Jo
Yo Y1 Y2 Y3 Yo Y1 Y2 Y3

Type 2 filters have an advantage over Type 1 in that only one set of latches is required for their
implementation.

When constructing an ARMA filter, the AR filter may be unstable. As long as the poles of the
AR filter match the zeros of the MA filter, the resulting ARMA filter is stable. However,
sometimes we may not be able to match the poles and the zeros perfectly. Some of the reasons
are

1. On computers, due to precision / truncation errors

2. Incapability of specifying the physical media (plant errors)



Given two vectors y and x, if we wanted to fit them together we would scale one of them by a
scalar a. Using mathematical symbols we would write it as:

f@)=]y-a,

f@)=(y-a) (y-ax)

f(a)=y'y-2ay' x+a’x"x

Thisis aminimization problem where a has to be varied to minimize f

df (a)

=2ax' x-2y'x=0
da

Ua=

f(a) is a parabola which can have a minimum only if the coefficient of the second degree term is
greater than zero viz. x'x. Thisistrue for an upward facing parabola as this term dominates every
other terms.

For a parabola ax*+bx+c the minima is at —b/2a. This is obvious because the intersections with
the x-axis are at —b/a and b/a and the parabolais symmetric'.

Deconvolution Revisited
Aswe have seen before an LTI system can be represented as

Y = AX
Further, deconvolution is the process of finding the kernel/input given the output and the
input/kernel. Hence we can view deconvolution as matrix inversion where in we need to find X
given Y and A by finding A and pre-multiplying the above equation.

A generaization of the above problem can be stated as

In most practical situations, X does not span the space of Y and hence there is no exact solution to
the above equation. Thus we formulate the minimization problem as:

Given Y and A, we have to get X such that
f(X)= HY - AXHz is minimum.

Where [U[ =>U?=U"U =(U,U) (L2 Norm)



This problem is very similar to the problem we encountered earlier. Y, A and X in the
above equation correspond to y, X, and a in the earlier problem. There a was a scalar here X isa
vector. We can see this as multiplying each multiplying each column of A (a vector) with each
row of X (ascalar).

Thus it may seem that we have reduced this problem into multiple instances of the
previous problem. However, this is not so because the columns of A do not form an orthogonal
basis.

The problem can be seen when we consider the following figure in which Y is a vector in
the plane of a; and a, (A spans'Y). Let us try and adopt the method of the previous problem here.
We project Y onto a; and project whatever is remaining onto a,. We see that we are still left with
some amount of Y and we have to repeat the same procedure again (and again...). Although this
procedure converges, it takes alot of time.

The figure below shows the first few steps in the projection and re-projection of Y along
a; and ap




L east Square Matrix I nversion

f(X) =¥ - AX;
a a oa X
NIV FR

f(X)=(Y - AX)T(Y - AX)

f(X)=(YT = XTAT)(Y - AX)
f(X)=XT(ATA)X - (YTAX) - (YTAX)T +YTY
f()=XT(ATAX - (2T AX+YY

P Qr R

We write the above equation as
f(X) = X'PX+ Q"X + R
where P = ATA
Q=-2A"Y
R=Y'Y
f(X) is afield representing an n-dimensional paraboloid™.

The above equation will have aminimaonly if Ox X'PX> 0
P isthe positive definite, writtenas P > 0

The above equation using summations:
f(X) =Zzpijxixj +ZQi
i j i

We take the partial derivative with respect to x; in order to minimize f(X)
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The minima of f(X) can be found by solvingf =0.

(P+PT)X+Q=0
O(P+PT)X =-Q
X=-(P+P")"Q

Thisisvery similar to the solution —b/2a if we put Q asb and P as a (Assuming P is symmetric
which it isin most practical cases).

Substituting for P and Q

X ==2(ATA+ ATATATY
X =(ATATATY

X=AtY

A" = (ATA)is called the pseudo inverse'.



In the above equation AT is the projection matrix. It projects Y onto the basis vectors of A.
Finally (ATA)™* converts the projections into linear combinands'.

di

az

v

In the above figure, the red vectors are the basis, the blue vectors are the projections of Y and the
green vectors are the linear combinands.

Let us review what we have done. Given the vectors Y and transformation we had to find X such
that Y - AX was minimum. Usually Y has far more components than X. We have to tweak only a
few parameters of the input vector X. For example,

. I v
Jay L cdaxey X
— e
Y A

Here X is a 2-dimensional vector and Y is a 4-dimensional vector. A converts X from its
coordinate system into the coordinate system of Y, thus making Y and AX comparable. AX isthe
linear combination of the bases of A weighted by the components of X. AX still liesin its plane of
X while Y is outside that plane. Hence we cannot directly equate them. Instead we drop
perpendiculars to the space of A and equate them. Dropping perpendiculars is done by pre-
multiplying them with A"

Hence, ATAX=ATY

And X =(ATA)TATY
y'x

Note that thislooks very similar to a = =-— which we had found earlier.
X' X

10



Udayan’'s comments and corrections —

' Because of commutativity, type | and type Il systems are equivalent. Thus, these are not two types of ARMA
filters. Rather they are two ways of implementing them.

" The parabola we are talking about is completely positive, and has no roots. But the —b/2a formula holds for
complex-root parabolas just like it does for real root parabolas.

"' “Quadratic surface”

iv AT - (ATA)-lAT

¥ “Combinants’!!

11



Applying the Least-Squares Method

28th Jan 2004

Summary of the lecture

1. We proved that the inverse of a linear system, when it exists, is also linear
2. Overview of system identification

3. We saw how to apply the least-squares method to system identification when we’re modelling the system as
MA.

Inverse of a linear system

Any linear system can be represented by a matrix (or by infinite matrix-shaped things). That’s because a linear
system is completely specified by its impulse responses at each time; and the columns of the matrix are these
impulse responses.

So, a linear system P is the matrix multiplication
y = Pz
where z is the input and y the output.

When does the function P~! exist ? For any function, the inverse exists when it is one-one and onto. In the
language of matrices and spaces and stuff, what does this mean ?

One-one-ness :

A necessary condition is that the output should have atleast as many dimensions as the input. That’s because it
is impossible to linearly map (i.e. “project”) a higher dimensional space into a smaller dimensional one without
becoming a many-to-one function.

It turns out that this is also a sufficient condition. There’s a theorem that if a linear system is one-one then it will
have same output dimension as input dimension. You can’t become many-to-one and stay linear without losing
a dimension.

Onto-ness :
A function is onto when its range equals its codomain.
The dimension of the output space is the rank of the matrix PT.

To see why, recall how we find the rank of a matrix: by doing row transformations and trying to make some row
zero. The number of non-zero rows remaining is the rank.

This means that we are trying to express some row as the linear combination of other rows. When this matrix is
PT | the rows are the bases of P. So we’re trying to express one basis vector as a linear combination of others.
Such a vector doesn’t need to be lying around in the basis, because the basis would span the same space without
it. So we remove this extra vector. Removing all such extra vectors is exactly what we do while finding the rank.
That’s why the “true” dimension of the output vector space is the rank of P7T.

For the matrix to be an onto function, it must be a full rank matrix, meaning that none of the colums should be
extra vectors. This corresponds to the range=codomain condition.



Now we’ll prove that when the inverse does exist, it is linear. That is, we’ll show that P~! is a linear transfor-
mation.

Applying the function P~! to a vector gets back the linear combinants’

First we show that P~Y(z +y) = P 'z + P 1y :

Figure 1: Linearity : Superposition

The blue solid line is z; the pink solid line is y; The red solid line is (x +y). The dotted lines are what P! gives
us. See how the blue and pink dotted lines add up to the red dotted line.

Then, we prove P~!(ax) = aP 'z :

Figure 2: Linearity : Scaling

The pink solid line is z; the blue solid line is az for some a; The red solid line is (a + 1)z. Again, the blue and
pink dotted lines add up to the red dotted line, i.e. the components of (a+ 1)z are (a + 1) times the components
of x.

In 12th we called these the scalar components of the vector. The scalar components multiplied by the corresponding basis form
the vector components. We’ll call both these things “linear combinants”.



Algebraically, if Pz = y:

Superposition:
P(l‘l -|-.”L'2) = Px1 + Px> =y1 +y2
Therefore,
P yr+y2) =P NPy +22) =x1+22 =P 'ys + Py,
Scaling:
P(az) = aPz = ay
Therefore

P lay = P(P'(ax)) = ar = aP 'y

Overview of System Identification

Figure 3: Output and Input

If you have a telescope which gives you an image like the one the left, and you know that the object it’s looking
at looks like the one on the right.

Then you have to find the convolution kernel which turns the image on the right into the one on the left. This
kernel will be something like:

Figure 4: The filter kernel



o] f ——v

Figure 5: A system

The system identification problem is: to find the impulse response of the LSI system f given an input vector x
and the resulting output vector y.

We classify this problem into two kinds:
1. Systems where we cannot control x, only measure what is already there.
2. Systems where we can give any z we want.

In the second type, what’s a good z to give 7 Well, the best z is an impulse because that immediately gives you
the impulse response. But you can’t always give an impulse, because it may be impossible in that system. For
example, if z is a sound wave, you can’t physically make an exact sound impulse.

Basically, any input = which has a wide range of frequencies in it (i.e. a broadband signal) is good. A square
wave, a ramp, a frequency sweep, are all good inputs to give. A sine wave is not, because it has just one frequency.
If you give a sine wave to the system, you’ll get the response to just one frequency. It’s better if you give many
sine waves with different frquencies. This is called a frequency sweep.

When you cannot control z, you can measure the input being given and try to work with that. But if it is narrow
band, then there’s nothing you can do about it.

Any causal non-zero signal is broadband.
Applying the Least Squares Method to MA system identification

Suppose we model the system as a moving average system with ¢ coefficients. Then, this is how we can apply the
least squares method to find those coefficients given = and y:

The least squares method gives us f when we give it the equation

Af =y

In this equation, we’ll make A out of the input vector x; f is the vector of dimension ¢ that we want to find; and
y is the output vector y. For example, if ¢ = 4:

zz 0 0 O U1
z2 1 0 O Y2
z3 w2 z1 0 ! Y3
Ty T3 T2 I | _ Y4
Ts Ty Ty Tz Js Ys
T Ts Ty T3 Ja Y6

We’ve shown x causal in this equation, but it need not be. If it is non-causal then those zeroes in A will be
replaced by z_1,x_4 etc.

When z is causal, no column in A, can be expressed as a linear combination of the others. This means that the
basis has no extra vectors.



What should the order (q) of the filter be ?

Sometimes you may be able to decide the order from other characteristics of the system. For example if you’re
modelling a system which disperses its input a little, and you know the time for which the dispersion can occur,
then you can decide the order.

Another way to get the order is to iterate over it, each time using the least-squares method to find f, and plot
the error ||y — A, f]| against g. The graph will look something like the blue line in :

A
Error

O der

>

N
Figure 6: Deciding q

The error becomes zero when there are as many coefficients as the dimension of x, in which case least-squares is
actually Gauss Elimination.

The corner in the middle of the graph is the order you should use. Increasing the order beyond this point is just
putting in extra coeflicients to make the filter better for this particular input.

Instead of plotting the error for the same input and output as was used in the least-squares, suppose we use a
different pair of z and y to find ||y — A, f||- Then if you increase the order too much, the error increases because
you're tailoring the filter to the input that was given to least-squares, not the input which was given to ||y — 4, f||.
So in this method the order we should use is the point where the error is minimum.

Using MA modelling for modelling an AR system:
You can use MA modelling to model an AR system, using a neat little trick:

The inverse of an AR system is an MA system. So, to model a system as AR, interchange the roles of y and «,
give them to least-squares. An MA system will come out. Invert it. That’s the required AR system.



L east-Squares Method Continued
-30™ January 2004

Why do we need Auto Regressive Systems?
If the system plant is recursive e.g. standing wave echo.

Moving Average requires more latches

Y ou need many coefficients for FIR
You can useit in integrator, differentiator and shock absorber

Modeling AR systems:

1. Mode theinverse of the AR system as MA
We know that if the coefficients of the Moving Average system are 1, f1,f, and f3, the

coefficients of the (inverse) AR system are 1, -f;,-f, and -f3 respectively.




2. Direct AR modeling
We know the equation of the AR filter.

Yo= CXo+ b1y.1 + boyo+ bays.......

Now since we start with zeroes, we can write the AR filter in matrix form

asfollows:

(0 0 0 xo | [by) (Yol
|y 0 0 xq | |b2| = |)/1|
|y y1 0 X | |b3| |Y2|
yo y1 y2 xsJ) lc) lys)



This method gives the same answer as the inverse. But the inverse method is
easier.

Direct AR is good if we have c=0. (c=0 indicates that the system does not depend
on any input)

Note: The matrix that we observe in the direct AR modeling is not the Toeplitz
matrix, asit is not the shift in shift out x thing.

ATA:

Some stuff about ATA.

It is the dot product of the bases and is the skinny matrix whose size is the order of the
system.

AT has the bases on the rows and A on the columns.

«hﬂT—x - y a_"j;L'TJ;L"';
orthogonal diagonal

If AT isorthogonal then AA isdiagonal. Impulse is an example of orthogonal bases,



ATA isthe auto correlation of the original matrix and it is a square, symmetric matrix and
the dot product of the bases.

Its dimension = no. of coefficients of the system.

Advantage of orthogonal bases.

If the bases are not orthogonal, then adding a base changes how the previousfilter is
used.

If thereisonly one base, so the red line shows how the filter is used

|
|
|
= >
1 baze

Now the new baseis not orthogonal, we wont know how to add the previous filter, its not
egual to the one base case.

ot arthogonal base
added

But in case of orthogonal bases there is no change in how the previous filter is used.

A

-

|

|

|
.l'lll.l'f "J '
Orthogonal base added




ARMA system identification:

There are two cases in this depending on the input.

If you can control the system input then we have three approximation techniques as
follows:

1. Pade Approximation Technigue

Onoo0o0o1 0000

ZETOES

N )
7

(f

In this technique we give an impulse as input. Assume that it has p poles and q zeroes.

1. Sincetheinput isfinite, we know that the middle line will have all zeroes after the
‘q

2. And you know the p+q output after this middle input is given to the AR (the
impul se response)

3. With thisinformation (p+q output and g followed by 0 input) you can find out the
coefficients of the AR filter.

4. Get theinverse of it, and then get the MA coefficients.

B



2. Prony’'s Approximation Technique:

000010000

Al this 15 zeroes
W E i
q f
/‘ Tz least squares
;f / Y
p . ’

In this you use the funda of all zeroes after q and Least Squares.
So consider lots of zeroes in the input and you get some huge output(for the AR filter).
Apply Least Squares and you can get the AR coefficients. Continue as above for MA.

3. Shanks Technique:
Usethefirst part of Prony or Pade and get the AR coefficients. Now we are going to
consider the equivalent MAAR

A

(- Tou know this from Pade

=0 this 13 easy to get

S

W

The sutput you get



Y ou have the impulse response of the AR system i.e the MA input. And given and
impulse you know the system output. Use these to get the MA coefficients.

ARMA asalargeMA

If you can’t control the system input i.e cannot give an impulse then there is another
technique

Mode the ARMA asalarge MA system. Give input in the order of millions, which will
get you huge output. Now Least Squares using information will give you anice
approximation of the Impulse Response of the system.

In al the Prony, Pade and Shanks we first found the impul se response, which we now
have. So you start with any of these techniques to get the remaining stuff.

Optimal ARMA Modeling

Y ou can use avery good linear method.
We know our ARMA system looks like this

And the equation for a particular yx will look like this
Yk = Do+ DiXic1 + DoXz... + Aryir + Y2t ...

So basically you can have lots of such equations (for different values of k) which can be
expressed as

% 0 0 0 0.0 0 OO0 .. [bo (Yol
IX1% 0 0 0 ... Yo 00 0 .. | Ibl = Iyil
X2 x1 X0 0 0 ..y1yo O O ...[ |byl |y, |

|X3 X2 X1 Xg 0 .. Y2 Y1 Yo 0o .. |
|X4 X3 X2 X1 Xo ... Y3 Y2 Y1 Yo ... |

\ S

|
|
|
|
.
.
.
L

This again may look like the Toeplitz matrix but isn't, its more of double Toeplitz (notice
thex’sand y’'s). Solve this using Least Squares and you will get the linear, optimal
ARMA system identification.



Applications of L east Squares:
1. Stock Market Prediction
If the next day’ s stock market value is dependent on the rise or fall in the pass few
days then you can model it as the following system, where all the X’ s are the stock
market sensex everyday.

Xa XI X Xy

XI x ;J;g X

2. Innovations Process
3. Used for Compression



Fourier Transform Basics

What is the Fourier Transform?

The Fourier Transform is the measurement of a signal along a set of complete , unit , orthogonal set of basis
vectors. Completeness means that all real world signals can be expressed without loss of information in terms of
the Fourier basis. Orthogonality implies that any component along one basis gives a zero projection on all other
basis,i.e changes in component along one basis doesnot affect the measurement along the other basis.It also turns
out that this set of basis is symmetric.

So what is these wonderful set of basis , and why we do we like them so much?

This set is the set of complex spirals, each rotating at multiples of a certain base frequency.This is very useful
because complex sinusoids e/¥ are eigen vectors of all linear systems.

And, since we can represent all real world signals as weighted sum of complex sinusoids, it is possible to represent
any real world signal in terms of the Fourier basis.

Complex sinusoids (or spiarls) have certain useful prpoerties.

Most important property is that when a complex sinusoid is passed through any linear time invariant system, it
only gets scaled at the output. It remains a complex sinusoid of the same frequency.This is so because all that
an LTI system can do is scale and shift the input. A shift of a complex spiral by 'z’ is same as its multiplication
by e/*.( ’Cork Screw effect’) .So , at the outputs this only amounts to a scale of the input.

So , all LTT systems can be expressed in terms of how they scale the complex spirals. This is best known to us
as H(w) or the frequency response of the system.

Note :: It is important to realize that a real sinusoid is not an eigen vector of LTI systems, as it gets scaled as
well as undergo phase change.

Least Squares approximation in the complex domain

We have already seen, in the 2nd lecture, how we can obtain a real number by which if we scale a real vector U
it fits another vector X best in the L2 sense.Now, we will extend it complex numbers, i.e. we will find a complex
number A |, such that if we scale U by A it best fits X in the L2 sense.

L2 norm best fit of X to Y, means that the root sum of squares(R.S.S) of the difference of ¥ and X is minimum.

If we look at the vector U as a measurement basis that measures a component of X along its direction, then the
complex scale A that we find such that U fits X best in the L2 sense, then A is the Fourier component or the
eigen value for eigen vector U in X.

Why is the L2 norm used usually ?
Refer to fig-1.
The y axis is the minimaztion function(remanant vector) and x-axis is the independent variable(scale).

Now we notice that in case of the L1 norm,the difference signal is not differentiable at its minimum point. Such
is not the case for the L2 norm, which is parabolic and differentiable at the minima.

Problem ::
Given complex vectors X and U we need to find a complex scalar A such that

1X = aU[[3



L1 Norm

L2 Norm

Figure 1: Comparisons of the L1 and L2 norms

is minimum.
Solution ::

E=[(X-AU) X - AU

)
E = [ (X - AU)(X - A7)

T-'>|T-'>

E= [ (X - AU)(X - A7)

This is because

~

L. (p+gq

2. (pg) =
E=[(XX - AUX — XAX — AUAT)

+q

il

3
<

E=[XX - [AUX - [AAT + [UT
Rewriting the above equation in a simpler form,

E=C+BA+B.A+ Ad4

Aimyg

—2B) <areal

)+ (

¢ 0
0 C

)



This a quadratic equation in matrices, just like the one we obtained in 2nd lecture. Solving this ,
Min = (A + A)~Y(2Byear — 2Bimg)T
~1

win= (5 0,) (o)
MinScale = BJA
MinScale = [UXdt/ [UUdt
MinScale =< u,z > | < u,u >
Observation ::
DOT(X , U) is not commutative. In fact it is conjugate of DOT(U , X)
Domain of the 4 types of the F.T
There 4 types of Fourier transforms depending on their domains. Here is the classification.
TRANSFORM :: DOMAIN
Fourier Series :: Continous Finite
Fourier Transform :: Continous Infinite
Discrete F.T :: Discrete Infinite
Discrete Time F.T :: Discrete Finite
Discrete Fourier Transform
Time domain is Discrete and Finite Frequency domain is Discrete and Finite

The Fourier basis here is a set of N discrete time complex spirals rotating at frequency that is integral multiples
of 2pi/N.

Equation of the k’th spiral : ug[n] = e/*2P/N

NOTE :: Different normalization factors are used for these basis vectors, but they only affect the scaling of the
components in the other domain. The normalization factor of

1/VN
, gives same energy in both domains.

For measurement over N such spirals rotating at speeds k =0, 1,2 ... N-1,the above result the Fourier coefficient
matrix X is obatained from x as

The reverse transformation is ,



r=(u w . . )X

We can show that the set of basis are mutually orthogonal.

Lets take two unit complex spirals one that completes wl turns in N samples, other that takes w2 turns. If we
dot product of the two, the resultant is a complex spiral of wl + w2 frequency. So, over N samples, the spiral
completes wl + w2 rotations. The sum over wl + w2 cycles is always zero.

To see why the sum of a complex spiral, like the one above, over wl + w2 cycles is zero ,see the figure below.
Assume that N = 8

W + W =5
Figure 2: Sum of N=8 spiral over wl+w2 cycles is 0

What we notice as that the vectors are all having their tips along the unit circle,i.e. their magnitudes are the
same, and there are pairs of such vectors pointing in excatly opposie directions, their total sum due to cancellation
will be 0. Remember that when we add to vectors the addition is by triangle law.So two opposite vectors yeild a
zero. The thing to notice is that only such opposite pair of vectors occur.

Of course, the more rigorous algebraic proof is very simple to do. It is just a summation with sqiggly math
charcatars, and not as colorful as the one above.

Hence, what is seen is an overview of what Fourier Transform is. Its application and properties will be seen in
the next lecture.
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The lecture started with circular convolution calculation viewable with cylinders. This
technique is also useful when thefilter kernel islarger  (in sample size) than one period
of the signal itself.

Circular Convolution: Using Cylinders
Consider the signal and filter to be marked on two different cylinders as shown in
the figure below. For circular convolution: Siond
n
a.) Thefilter cylinder and result cylinder both, are 1% J
rotated 1 unit about their height axes.
b.) The corresponding points on the signal cylinder ,.\/ Filter
and filter cylinders are multiplied with each other.
c.) These products are added to give the output at
: - —v Result
that point of the result cylinder.
d.) On performing these steps for al the points we
unfurl the result cylinder to get the convolution

result.

What if thefilter sizeislarger than one period of the signal? The most intuitive thing isto
change the size of the filter cylinder as well. Another solution that we can see isto mark
thefilter kernel on the cylinder spiraly i.e. in rudimentary terms let the extrakernel
points get marked below the kernel.

The extra points are also used during the convolution along

with the corresponding point from top.

Thus during one cycle of our convolution process, for some =~ Extra points
points on the signal, we perform two multiplications.

Thisidea can be simplified by adding the extra pointsinto the

corresponding kernel points that align with them. Thus, we get a new kernel of the same

size asthe signal period.



With this clear we moved on to show that convolution of two signalsis easier to calculate
by
(1) Decomposing the signalsinto their spiral components
(i) Convolving only those corresponding spirals which have the same frequency
(@iii)  Andfinally synthesizing all these individual results to get the final result i.e. the

convolution of the signals.

Representing this algebraically:

Let x and f be the signal and filter we want to convolve. Lets decompose X and f
into the spirals given by:

X= Xp4 X0+ o4 X,

f=f. .+ .. +f,

X; fi arethe corresponding spiral components of x and f with same frequencies

O (X*f)=(Xg+Xo+ .o+ X)) * (fie ot .+ 1)
= (Xl*f1)+(X1*f2)+...(X]_*fn)

H(x*f)+(x*fh)+... (x*f)

+ (X *f)+ (xR + . ()

Now, we can prove that if the two convolving spirals do not have the same frequency
then their resultant is zero and that only those with same frequency contribute to the

value of thefinal convolution result. Thus the above equation reduces to:

(X*f)=(x *f)+(x*f)+... (X *f)

The convolution of X and f is thus reduced to the ‘n’ convolutions of the ‘n’

corresponding spiral components and adding their individual resultants.



This procedure is feasible because we know or rather have the data about each spiral
component viz. :

(1) Starting phase

(i) Individual frequency

(iii)  Individual amplitude
The convolution result of each corresponding component pair is given by the spiral with:

0) Starting phase = Xig + fig
(i)  Frequency = Xig- fiw

@iii)  Amplitude

[N isno. of sample points.]

We noted when to use which form of the Fourier Transform depending on the signal

domain:
Signal Domain Transform
Discrete & Finite DFT
Continuous & Finite Fourier Series
Discrete & Infinite DTFT
Continuous & Infinite FT

Shift Property:

Shifting a sequence in time results in the multiplication of the DTFT by a
complex exponentia (linear phase term):

DTFT

xn-n) () e"XEe™)



We also saw the application of using rules governing linear systems to simplify
convolution of continuous signals:

Modify one of the signalsin some linear way, perform the convolution, and then undo the
original modification. As an example we used the derivative as the modification and it is

undone by taking the integral.

x(0) h(t) y(©)
T T T : T T T : T T T
1 1 1 | | | 1 | 1
= 1 1 1 = 1 | =] 1 | 1
2 1 1 1 2 1 | 2 1 | 1
= ] —— PR H=g [ —_——e e e — e T e P e Ll
= 1 * =) | | — g 1 1
= 1 = 1 | = 1 | 1
1 | 1 |
D } 0 . i . 0 ] I A
1 1} 1 3 1 1] 1 2 W] | 2
Time Time Time

l d/dt
F
x'(t) Y h(t) )

. i i i ) H i i )
3 |————-*———-=-———4|-——— 7R [ S— S g 14
= ! h ' =y | - =
g I | * 5 i I I — ]
Eal__ ___!___.L___ L= I [ VY N =

i i i i I
2 } ! | 2 ! ! !
1 0 ! 2 3 1 0 1 2 :
Time Time Time

Diagram from DspGuide
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Properties of FT (contd.):
Duality property:
Similar to the duality theorem in Boolean algebrawherein 0 - 1, AND « OR.

Here,
Frequency — time

The IDFT matrix and corresponding DFT matrix Arrows showing
correspondence
00 0 0o 0 between the IDFT and
a4 DFT rows, angles are
N :
0o O %\1 O %\I 0 %\I negeted

0o 024, oy, - ON-I

DN_}I/\I DN—ZN D}{\l .

0o [0Oo oo - (DO)
- - -(N -

0o O-%, 072 - O /\r

0o 0% 0% - oON-I

oo 03, 0% - oON-I "

Soif wedo DFT(DFT(x)), we get aflipped or inverted x at the output. Thisis because

the DFT matrix is orthogonal and symmetric (not conjugate symmetric).

s

U

Windowing Theorem: Duality applied to the Convolution theorem:

Point wise multiplication in time -  Convolution in frequency domain
Applications of windowing theorem:

1) Analysis of infinite signals:

Given an infinite signal, we can use a 'suitable’ size window to clip it in the time domain,
sothat it is easier to analyze.



The size of the window depends on the nature of the signal being analyzed:
Slow changing signa - larger window size
Fast changing signal  ~ asmall window

A large window size implies more precise frequency information, while a higher time
resolution (small time window) implies worse frequency resolution. Thisis similar to
Heisenberg's Uncertainty Principle, wherein momentum and position, time and energy
etc were canonically conjugate to each other.

Another view to explain this phenomenon is by using information theory. Short signals
have inherently smaller frequency resolution, and we cannot 'create information'. Of
course, using non-linear heuristicsit is possible to get better results.

2) Amplitude modulation:

The other application where we point wise multiply in the time domain isin amplitude
modul ation.

Consider amodulation of agiven signal with a single complex spiral having frequency . .
Thisresultsin the convolution of the signal with adelta shifted by « in the frequency
domain, which of course results in the frequency shift of the signal from base band to
higher band.

In time domain, multiply with
spiral of frequency @

—

time

Using duality, in the Frequency
domain, it’s convolution with a
shifted delta

—

—

frequency




The above reasoning used the Duality theorem.

One can a'so think about it directly by decomposing the signal and the modulator into
spirals and using the fact that the multiplication of to spirals of frequencies .1 and «2,
resultsin aspiral of frequency a1+ a2 (afrequency shift).

So, the modulation theorem is the dual of the Shift theorem!

Dual of the Derivative theorem:

Multiplication in timedomain by aramp ~ differentiation in frequency domain

tf (t)dit - j—z
_J;tf (t )it - j—z) ,a o = 0(thedc value)

The LHS represents the expected value of the signal E[X] :
This property is also known as the First moment property of the FT.

Similarly,
d’F

E[XZJ = '[xzfx(x)dx = 4.
is called the Second moment of the signal.

aa=0

Together these 2 properties are called the Moment generating properties of the FT, and
are used to find the Variance of the signal.

Another interesting point we covered was that when you add 2 random variables, their
probability mass functions get convolved!

Fast Fourier Transform:

2 types:

1) Decimation in time
2) Decimation in frequency



Stepsfor decimation in time FFT:
(For the following figures, imagine that the x-axis index starts from O, not 1)

Givenasigna 0,

Separate it into even and odd bands 1 & 2 (using linearity),

1: Even band

2: Odd band

2.Get 1 & 2' by down

1

3

2t

2

1.5

25

sampling.



1 : - -
1 15 2 25 3

3. Recursively get the DFT of these 2 signals
4. Use stretch theorem (and rotation by w for shifted odd band) to get DFT of 1 & 2
5. Then again use linearity to get DFT of O

The following recursion represents this process,

T(n) = T(n/2) +n

Which has the solution,

T(n)=0(nign)

This procedure represents an order improvement over the naive N?algorithm. A similar

analysis can be carried for decimation in frequency.

Other improvements are possible:
e Sparse matrices are used to get from 1' + 2' to 0, since they can be multiplied in
linear time.

»  Other bases reduce the constant in the nlgn and are more suitable for use on
computers.

» Taking a4-point instead of 2-point, gives rise to some common sub-expression
savings.

» Algorithms such Prime Number decomposition deals with finding DFTs of non-
dyadic sequences.

These will be discussed in detail in later lectures.



Another interesting point about the FFT is that apart from it being faster it ismore
precise: each coefficient isfound after Ign multiply-adds; as opposed to the nfor naive
DFT. Thisleadsto less round-off error.

Interestingly, the best way to minimize round-off error when adding a sequence of
numbersisto add the smallest two each time.

So with all our knowledge, we can now do circular convolutionin nign.

What if you wanted to get linear convolution?

Add enough padding to the signal to avoid wraparound distortion.

N L-1
Signa < >< >
L 000000
Kernel —
Linear N+L-1 R
Convolution g

Can’'t use such alarge FFT because:
* Real-time applications: larger N, more time taken to do the convolution.
* Precision problems: more N, more additions, less precision.

So you would have a case where your kerndl is of length 40, your signal is of length 1
million, and you are only allowed (due to the two reasons mentioned above) to take a
FFT of 1000!

In which case, you use techniques such as Overlap-add and Overlap-save to do
convolution, but don’t get the transform.



Overlap-add method:

M : size of FIR filter kernel
L - size of the input data block
N=L+M-1: size of DFT and IDFT

To each data block we append M-1 zeroes and compute N-point DFT. Since each data
block isterminated with M-1 zeroes, the last M-1 points from each output block must be
overlapped and added to the first M-1 points of the succeeding block.

Overlap-add method
Input data
L L L
I
I
X |
X2
X3
M-1 zeroes
Output data
Y1
Y,

M-1
points Ys
added

together



Overlap-save method:

M : size of FIR filter kernd
N=L+M-1: size of data blocks
N : szeof DFT and IDFT

Each data block consists of M-1 points from the previous data block followed by L new
data points to form a data sequence of N=L+M-1. The kernel length isincreased by
appending L-1 zeroes and an N-point DFT is computed and stored. The first M-1 points
of this are corrupted by aliasing and must be discarded. The last L points are exactly the
same as the result from linear convolution.

To avoid loss of data dueto aliasing, the last M-1 points of each data record are saved
and these points become the first M-1 points of the subsequent record. To begin
processing, the first M-1 points are set to zero.

Overlap-save method

Input signal
| | |
Xl
M-1
zeroes
X2
M-1
X3
M-1
Output signal
Y1
Y,
Y3

Discard M-1
points \)



INTRODUCTION TO UPSAMPLING &
DOWNSAMPLING

What is Sampling Rate Conversion?

As the name suggests, the process of converting the sampling rate of a
digital signal from one rate to another is Sampling Rate Conversion.

Increasing the rate of already sampled signal is Upsampling whereas
decreasing therate is called downsampling.

Why to do it?

Many practical applications require to transmit and receive digital
signals with different sampling rates. So at many stages in application we
need to do sampling rate conversion.

How to do it?

There are two ways in which we can achieve sampling rate
conversion:

1. First approach is to do D/A conversion to recover back original
analog signal. Then we can do A/D converson with desired
sampling rate. The advantage of this technique is that the second
sampling rate need not hold any specia relationship with old one.
But the problem is signa distortion introduced by D/A and
guantization effects of A/D.

2. Second approach is to work in digital domain only. So we'll have
to predict the digital signal with desired rate using the aready
sampled signal in hand.

Now for this lecture, we'll ook at the second choice of sampling rate
conversion.



UPSAMPLING

Let's consider, simplest case of upsampling. We want to double the
sampling rate of signal. So what we do is insert Os in between two
successive samples. As shown:

0 T 2T ‘ 3T

QOriginal Sampled signal

0 T2 T 8T 2T 5T2 |3y

Upsampling by 2: Inserting zero
between two samples

Obviously this is a bad approach. As we don’'t have data for
intermediate samples, let’s generate it.

Method-1: Repetition

Repeat the current sample.
The corresponding filter kernel will be

1 1

0o T2

Filter kernel for Repetition



The output waveform will be;

]

0 T2z T 3T2 2T 51237

Upsampled by 2 using repetition

Method-2: I nterpolation

The intermediate sample value will be the average of its
neighboring values.
Thefilter kerndl will be:

1
1/2 12

-T2 0 T2

Filter Kernel for interpolation

The output waveform will be;

Ll

0 T2 T 3TI2 271 ETIE‘
Upsampled by 2 using interpolation




Now this a very good method but it produces, two aliases of each
frequency in frequency domain . So we should cut the high frequency
contentsto avoid aliasing.

Why to cut?

Use of rectangular window

Because they don’'t contain any new information. They are just
repeating information. We aso know that maximum frequency
content in original signa cannot be greater than FS/2 so there is
definitely no more information in baseband. So we can afford to cut
high frequency contents.

How to cut it?
Use a perfect low pass filter. That is we will keep slow moving
spirals and reject fast moving spiralsin frequency domain.

—x —xf2 0 /2 ._,,
Low pass filter selecting frequecies between —x/2 to /2



so filter kernel in frequency domain is as shown. Its amplitude is 1 for
frequenciesin the range - 172 to +172 and zero for rest al frequencies. So we
cut the high frequency aliases. So filter kernel in frequency domain is set of
slow moving spirals having amplitude 1.

Let's figure out, what will be the corresponding filter kernel time
domain.

2
[ €dw=m2-(-2)=n

-l 2

| €°dw=1j(@™ - e™)=2

-l 2

Tl 2 .
[ edw=0

-l 2

Tl 2 .
[ edw=-2/3

-l 2



—2/3 -2/3
Filter kernel for Perfect Interpolator

Thus the perfect interpolator is an Infinite Impulse Response (11R) filter. The
filter is not causal hence cannot model using ARMA. We cannot implement
thefilter becauseit’sinfinite.

There is a class of functions called Analytic functions. According to
Taylor, al the information in the anaytical function is at zero, so you don’t
have to go far. We can express these functions as Lauriant series and model
them. But for this, the function should be continuous at al points. But our
perfect interpolator filter kernel is discontinuous at - W2 and 172.

One interesting observation is that, we are getting zeros at previously
sampled pointsin thefilter kernel.

So to do upsampling faster we can use Multi-channel Polyphase
Multi-sampler with two filter banks.

1. 1% filter bank doing nothing (corresponding to aready sampled

points).

2. 2" filter bank with half sample delay.

UPSAMPLING BY 4
Here the filter kernd will look like this:



0 0 0 0
-4 cL -2 -1 0 1 2 & 4
—2/3 -2/3
Filter kernel for Perfect Interpolator
for upsampline by factor 4

In this case, we'll have to predict three new samples, between already
present pair of samples. We now will have 4-filter banks.

1. Bank with O sample delay.

2. Bank with 1/4 sample delay.
3. Bank with 1/2 sample delay.
4. Bank with 3/4 sample delay.

PRACTICAL DESIGN OF FILTER:

Use of Linear Phase Filters:

For practical design of upsampler filters, we use delayed symmetric
filters.

Zero phase filters are symmetric about zero. Delayed symmetric filters
have symmetry along a shifted point. They are aso caled as Linear phase
filters. The advantage of this approach is the filtering can happen at rea
time. But disadvantage is that the output is not sharp.

Use of ARMA filters:

Using ARMA filters, we can get sharper output. But we cannot get
real time processing using ARMA filters.

For offline processing, we can use two ARMA filters, one Causal and
second Anti-causal filter. Then we just add the outputs and we'll have
desired result. The filter kernel of Causal and Anti-causal filters will be just
the flips of one another.




ARMA filter

> Causal Anti-cauzal

v

Cascaded ARMA filter

DOWNSAMPLING:

As said, Downsampling is decreasing the sampling rate of asignal.
Let’s consider a smple case of downsampling a signal to half of its original
sampling rate.

Simplest way to do thisisto forget every other sample and we'll have
the desired sampling rate.

(1 ]XT
! l

Original Signal

l ]

Signal downsampled by 2




But if we reduce the sampling rate just by selecting every other sample of
x(n), the resulting with folding frequency Fs/2 . The frequency spectrum
tries to spread up but it cannot do so. Hence it winds up on itself.

-T2 /2
Original Spectrum

]

Spectrum wound up on
itself

To avoid aliasing, we must first reduce the bandwidth of x(n) t0 Wy =
172. So we should cut out high frequency contents to avoid aliasing.



Filter Design for Down/Up sampling

Last lecture we saw Downsampling and Upsampling techniques which concludes-
Down sampling

1.Information is Lost when signal is downsampled

2.down sampler causes aliasing

Up sampling

Linformation is NOT lost when signal is up sampled

2.Up sampler produces Spectral images.

Solutions:

Down Sampler

Input Signal is passed through alow pass filter and Band limited to (17D).

Then it is downsampled at the rate (Fx/D) where Fx=Sampling rate of input signal

Up Sampler
In Up sampler signal is upsampled at the rate Fx*| and then passed through alow pass
filter which eliminates the spectral images.(by rejecting al the values above (w=1v1).

Efficiency in Filter design

Upsampler

In atypical Upsampler followed by Low passfilter (LPF) :

LPF works at the rate of : 1* Fx

But we know that Upsampler inserts I-1 zeros in-between two samples so lots of filter
coefficients will be zero which implies that I-1 multiplication and addition in the filter
gives out output zero which is perhaps same asinput i.e. upsampled signal). This leads
some kind of redundancy.

So we come up with next solution

We can combine the Upsampler and Filter kernel such that input signal is multiplied by

filter coefficients and then Upsampled to insert zeros (in effect instead of just bypassing
zeros of upsampled datain filter we first pass each input sample through filter and insert
(I-1) zeros at the output and combine the result of each sample of input signal)

Thus now Filter operates at input sampling rate Fx.

Thus reduction in Filter frequency is of 1/1.

Similarly it can be designed for downsampler i.e. by combining the filter kernel and
downsampler, we first select the Dth sample and multiply it with filter coefficient. So
filter works at Fx/D wherein atypical case it would be operating at Fx.

Thus reduction in Filter frequency is of 1/D.



USE of symmetric property of Filter kernel

We can still reduce the multiplicationsin filtering operation by NOT calculating the

h(i+M/2)* Xj which will be same as h(i)*Xj (M is size of filter kernel) .Thus we can
reduce no. of multiplications by %2.I1t will aso reduce space required for storing these
multiplications.

Polyphasefilter design for Upsampler

If we observe the Upsampling process it introduces I-1 zeros thusiif filter
neglects(actually holding I-1 samples) first I-1 inputs from upsampler then we will get a
output of | samplesin next time slot.

Now if M issize of filter kernel (that meansit can hold M inputs before giving outputs)
then in each of next time slot we will get FLOOR (M/1) no. Of NON-ZERO output
samples, which are then multiplied with filter coefficients.

We are interested in finding out these NON-ZERO samples.

Hence we can consider Upsampler as aparalel combination of | filters which starts
giving | output samples after first I-1 samples.

Working goes like this:

Assuming M asamultiple of I, infirst | samples there are (M/1) non-zero sample output
which are multiplied with a downsampled version of h(n)(filter sequence) h(0),h(1),h(2I)..
For next input sample these samples will get shifted (delayed) by one and will still have
M/I no. of non-zero samples which will get multiplied by h(1),h(I1+1),h(21+1)..

Size of each such filter bank will be (M/I).

If we observe thefirst filter bank itis
Downsampled original filter kernel h(n) with D=I
And
Each such next filter i is downsampled signal of shifted filter kernel h(n+i)
Where 1<=i<=I-1.
Thus each filter differsin phase hence caled as POLY PHASE filters
Thusthere are | different filters acting on | samples.
Similar kind of design can be done for Downsampling.

Now I-1 filterswork at frequency Fx and Output of each filter is collected at rate I* Fx
Hence reduction in filter calculations we obtain is : (I-1)/1



Rational Sampling rate conversion (p/q)
There are two approaches for doing rational sampling.

DOWN-> UP sampling

Downsampling signal first and then upsampling looses information in signal.

Since downsampling selects every qth sample and upsampler then inserts p zero the
output signal do not contain same information.

UP->DOWN sampling

Upsampling signal first (inserting zerosi.e. no information loss) and then downsampling
do not have information loss but signal is aliased. But aliasing can be eliminated by anti-
aliasing filter.

Hence in Rational sampling rate conversion Upsampling is done before Downsampling.
This kind of sampling can be obtained by cascading two polyphase filters of an
upsampler and downsampler.

Thus combining the 2 filter kernels of we can get the desired result.

TIME -VARIANT Filters.
If p/qistheratio we wanted ...then for g inputs we want p outputs...

Getting polyphase filters from filter kernel we just downsample it at rate D=I
For example let us assume that we want to sample the input at rate 3/2

So when upsampler is followed by downsampler..
In upsampler we have filter banks of (h0,h3,h6..) (h1,h4,h7) (h2,h5,h8..) .....
So first non-zero output we get is from 1% bank....Second from 2™ bank and so on

When we down sample these stretched signal from upsampler we are interested in non-
zero values of stretched signal only.

And since we want every second sample to be selected we design the filter using above
filter banks ...

So combininng effect will be arranging filter banks with gap of 2 as

(hO, h3,h6..) then (h2,h5,h8..)..... (h4,h7,h10..) and so on

But we need to take care of the previous coefficient of the filter also..

Assuming h(n) is causal i.e. h(n)=0 for n<0

We get the banks as

(0,h0, h3, h6..) then (0,h2, h5,h8...)then(h1,h4,h7...) and so on

Following diagram will best show this example



Diiginal Signal

streched signal(Two Zeros between twa samples)
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Output signal Down-S ampling Streched signal

If u observe the diagram
first output sample(4™ from left) can be obtained by using filter coefficients
h(-3)=0,h0,h3,h6

Next one (3rd from left) can be obtained by h (-1)=0,h2, h5, h8
Similarly next one (2nd from left) can be obtained from hl, h4, h7,h10
Same sequence will get repeated after each 6 samples of stretched signal
Reduction we get by thisis 1/(D*1).

Implementation of 3/2 sampler for 2 channel input can be shown as



i
channel
input

every Jrd sample of
putput

Real-value upsampling

Suppose we want to upsample signal by 23.7.

In this case we can find p and g such that p/q best approximate to 23.7

But p and g may be too huge to design upsampler OR downsampler.

Hence method is not always useful.

Hence we first upsample signal by 23 and use approximation.

We can use linear filter to find the neighbor sample, whichis closeto 0.7 and use the
“error” in approximation to predict next sample to approximate.

Applications of multirate sampling
1.speech scaling and speech shifters
2.compression/decompression algorithms
3.graphics



Filter Banks
Before we do filter banks some other stuff.
Sampling and reconstruction principles are used for designing devices like speakers

and soundcard. They do reconstruction upto 8khz

Y ou can use a hold for reconstruction

A A

v

0 At
Time domain Frequency domain
Fig 1

To have thiskind of a sample and hold effect

We need to first stretch and then convolve

Theoretical view:

If the signal is like below then the area under the curveis 0 as 5-2-4 have O area
Thiswill result in O output

So what we need to do is to have unit area for 5-2-4.Hence convert them to dirac delta.

v

v



So the effect achieved as opposed to using just 5-2-4 are as follows
1. thefirst stretch caused one repeat in the -172 to +172 domain, but the dirac guys
cause infinitely many repeats in the infinite freq domain
2. which will give you afourier transform kind of athing
3. soyou haveto usealow passfilter kernel to get the original freq response

Now the hold circuit shown in figure one is not so good to use
Mostly op-amps have this kind of a hold effect
So they use an analog lowpass filter after this

People who actually use this reconstruction technique are mainly LCD reconstruction and
sometimes for huge T.V monitors

T.Vsideadlly have to use the figure shown below for reconstruction ie thisis how the
phosphors have to get illuminated

»
|

But due to the R-G-B fundawhat they really do is use this for R-G-B each

»
»

and due to persistence of vision it actually adds up to the above



So coming back to what exactly isafilter bank

It looks something like this

> Narrowband channel

> Narrowband channel
Broadband signd
> > »  Narrowband channel
» Narrowband channel
> Narrowband channel
Advantages.

This concept of filter banksis good for the following reasons

Since you can separate out the narrowband channels its good for analyzing or processing
complex signals as you can definitely separate them out into many narrowband channels
which are comparatively simple to process.

It can also be used for voice reconstruction or compression

Usually when you talk it’ sthe air that passes the glottis, which produces some kind of
vibrations in the air which look like this

VAN WA WA

v

The mouth cavity acts as afilter kernel for thissignal.

This principal frequency and the overtones are actually your active frequencies.
Since you do windowing they appear as many.

These are the only frequencies that u have to actually care about

So what you can do is use afilter bank and separate out the active frequencies,



How do you find the active frequencies from the others, which are produced due
to windowing

After the filtering you will get the frequency response that will look something
likethis

A Pick the tallest frequency, thisis the active frequency

Al ;

Compression
Using filter banks for compression of MP3 files
Thisis how quantization |ooks

A

A\
/

T// )
Y N

All the red arrows are the error or noise induced due to quantization. If the
guantization levels are further gpart (which means lower no. of bits), the noise will be
more. But due to the persistence of hearing louder sound masks smaller sounds.

Soif u are quantizing aloud sound u can use fewer levels, in spite of more
guantization noise and thus have better compression.

v

But in spite of the loud sound, you may not be able to mask all lower frequencies.
Like an opera singer may not be able to mask the base voice of Amin Sayani.



So if you want to do some kind of compression you could use the following

Companding bit stream
With white noise

Nar&wb‘and Filter l Decompalldi ng Bit Stream
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Narrowband filter to eliminate white noise
so you get only narrowband noise

So thisis how we are trying to achieve some compression.

But what we have ended up doing is just splitting the broadband signal into 12
narrowbands(in case of MP3 sound). Thisis not enough compression.

A better thing we could do is use a downsampler (where D = 12 in case of MP3)

Which would look like

A 4

Filter Downsampler

Quantizer




Quadrature Mirror Filtering
Now lets take the example of asimple filter bank where we split the signal using alow-
pass and high-pass filter

Now here we are really not concerned with what is happening in the middle layer
(it could be a quantizer had we been thinking of compression, or anything)

Now initially the signal will get split into high and low frequencies. But as little of
the higher frequencies pass through the low pass filter and the same for lower
frequencies, thereis alittle smudging (indicated by the green part).

Next, both the downsamplers will cause a stretch in this smudged signdl, to give
the green part in the center.

Now we assume some process operating on this downsampled version of our
signal, in the middle part, which will cause some smudging/distortion, and aso after
upsampling by 2, we will get arepeat in the signal spectrum. But here the green part,



becomes a part of the spectrum, and hence its aliases will actually not be recognizablein
the signal (although the drawing shows the different colour). The g filters will remove the
repeat, and the final spectrum is obtained.

X(w)H1(w)  X()H1(w)Gi(wtm)
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X(@H(w)  X(w)Ha(w)Ga(w+m)

The figure above shows the frequency response after every step of the low pass and high
pass filters.

The red marked areas are the effects of aliasing(the green part which we want to
eliminate). Just by itself we may not be able to design g; and g, such that the green part
gets eliminated in the output, its because once you reach the right hand side, you really
cant differentiate between the smudging and the actual signal.

However you can make use of the fact that the green part is some high frequency
component in the upper half and some low frequency component in the lower half. Hence
we can use theinitia high pass filter to remove the high pass component in the RHS, and
the same applies for the low passfilter.



We know that the final addition isthis,

X(@)H2(w)Go(w) + X(w)H1(w)Ga(w) + X(w)Ha()Go(wtT) + X(w)H1(w)Gi(wtT)
Out of that we need

X(w)Ha0) G(wrH1) + X(w)H1(0)Ga(wt1) =0
Because we want to cancel out the aliasing,
Ha(w) G+ 1) + Hy(w)Gy(w+m) =0

Ga(wtm) = Ha(w)

Gz((.t)"'T[) =- H]_((JO)

Thisthing is called Quadrature Phase Mirroring

Now if we have the low pass filter having frequency response Hi(w)

We know that for the Perfect Alias Canceling high pass filter we need the frequency
response to just be shifted by 1t

We could write its frequency response as Hi(w+1)

Now a shift of Ttin the frequency domain is equivalent to multiplying by €™ in the time
domain.

Hence every alternate sample will get inverted (because €™ will effectively do (-1)")
Therefore h, is same as h; except for the fact that h, has every next sample of h; inverted.
And since g; and g, also depend on the h; and h, we only need to design onefilter h.

Each of these hy,h,,0; and g, need to be linear phase filters, because we cant afford to
shift the phases of the narrowband signalsin the filter banks, we finally have to
synthesize them into one broadband again.

Therefore they have to be symmetric filters.




hy hy(alternate samples inverted)

Even number of samples
symmetric

HERER

unsymmetric

Odd no of samples
symmetric

symmetric

Therefore we need our linear phase filter h(based on which al hy,h,,0; and g, are
designed) to have odd number of samples.

All this stuff combined together gives us our Quadrature Mirror filtering.



Lecture Date — 26/3/04

Statistical Signal Processing
We started by learning about Random Variables.

A random variable X is rea valued and is something, which is unknown to us. It is the
value the variable x would have in the future. It is possible that the event that gives x a
value has taken place, but till we don’t know the result, X remains to be the random
variable X.

Random variables are like a secret (area value) in aclosed box, and we guess what this
could be, without opening the box.

This guesswork is based on what we call a“belief system”. E.g.: Suppose we wanted to
guess the outcome of a fair coin toss. Some of us would say that there is an equal
probability of getting a head or tail. We give the occurrence of head and tail both a
probability of %2 each because we believe that for some reason.

Since we don’'t know the value of the random variable, it can take any one value from a
given set of finite values. Such variables are known as Discrete Random Variables. With
each such value a probability is associated (depending upon our belief system). This set
of probabilitiesisthe Probability Mass function (pmf).

E.g. If wethrow adice, 1,2,3,4,5 or 6 can occur each with lets say a probability of 1/6.
The pmf for thisis{1/6, 1/6, 1/6, 1/6, 1/6, 1/6} .

It is denoted by px (x) the pmf of the random variable X. It is the probability that the

value of X obtained on performance of the experiment is equal to x, ‘x isthe argument of
the function and isavariable and very different from X.
Some important properties of pmf

1. Since Px (x) is probability, 0= Px () <1,0x

2. 2 Px (x) = 1. Thistrue asthe random variable will be assigned some
X value definitely.

Similarly if we have 2 events, E.g. throwing 2 dice. Then the pmf associated with this
event (which, is made up of 2 events) is given by what is caled the ‘Joint pmf’. It is
important to see that a Joint pmf contains more information then the individual pmfs.
Consider the example of throwing 2 dice. Suppose the outcome of this event was that the
1 dice always tries to match the other. If we looked at the die individually, we would
think that all the values are equally probable and may not realize that they actually trying
to be equal.



The joint pmf for this would be 2-D table, with values of dice X on 1 dimension and that
of Y on the other.

X\

1 (160 0 0 0 0

510 0 0 0 1/6 | 0

6 |0 0 0 0 0 1/6

Fig 1: Joint pmf of 2 die when they are thrown such that 1 always tries to match the other.

Like this we can have the joint pmf of ‘n’ random variables, which would be an N
dimensional table. The joint pmf for 2 random variables can be written as

Px, Y (X: y), the probability that X=x and Y=y.

In terms of closed boxes joint pmf means that we have 1 big box containing 2 boxes with
X and Y inside them. Opening the big box means opening the 2 smaler boxes
automatically and the joint pmf is the label on the big box.

Suppose, if we had to open only one of these boxes say X, then we can find the pmf for Y

from the joint pmf as below. Thisis called the *conditional pmf’ and is read as the pmf of
Y given X equal to ‘X’

Prix=x () = Px.v (x5)
2 Py (x)
b
Suppose given the joint pmf of X,Y, we want to find the pmf of X. Thisislike saying we

don't careabout Y at al i.e. given the joint pmf we want to find the individual pmfs. This
iscaled the ‘Marginal pmf’ and isfound as

Px ()= ?px,v (x »)




Pmf is possible in the discrete domain, but for continuous domain, the random variable
can take a value from infinite values. Thus for continuous valued random variables we
define the Probability density function (pdf). It is the ratio of the probability of the
domain to the measure of that domain and at a point it is the limit of this ratio as the
measure tends to zero.

E.g. We have a dart board, and want the probability of hitting a point on the board. In the
1-dimensional case, the measure would be length and the pdf could be shown as below.

Probability k

Measure —

It is denoted as fX (x)

The pdf satisfies the following properties

1 fx(x)>0,|:|x.

2. Theareaunder thecurvemustbeli.e

| fx(ax=1

Suppose we have lumped and continuous probabilities together like in the regulator of a
fan. We have lumped probability at the standard fan speeds, but continuous between
them. This can be shown by dirac delta functions in the pdf as shown below.

B!

Expected value of arandom variable X

Thisis the expected value of - the average value of X over all the possible futures.
In other words, if we could perform an experiment ‘n’ times to find the value of X, then
the mean of all those values would be the expected value of the random variable X.

Mathematically, E[X] the expected value of X is



E[X]:gpx(ox or

E[X] :J fx()xdx  (f x (x) dX isthe probability of x)

Linearity of expectations

E[X+Y] = E[X] + E[Y]
Proof:

E[X+Y] = Uy (x+3) fxy (x) dy dx
=jjxfx,v(xy) dy dx + .[ y [ x.v () dy dx

b

Sl (Fxw @) dyyax + [0 (Fxy () dx) dy
Jx fx@ ax+ Tofy()dy
~E[X] + E[Y]

Also, if we have afunction g(X) (i.e. afunction which depends only on X), then

E[ox)] = ; () o

This can be seen from the fact that,

P 909 (99)= 2 ()
X g(x)

Estimators of X
We want to predict the value of X, such that the expected value of the mean square

error isminimum i.e. E[(X-a) ?] is minimum, where ais the estimated value of X.
E[(X-a) i = E[X 4] —2aE[X] + &




Differentiating w.r.ttoa
— 2E[X]+2a=0
a=E[X]
The value of ‘a comes out to be E[X]. This is the best estimator for X, which is the
expected value of X itself.

Suppose we had the Joint pdf of X & Y. Now, if we open the box for Y, we can predict
the value of X given Y=y.

From above we observe ‘a will be,
a=E[X | Y =] (the centroid of the row with Y =y)

Thus‘a isafunction of y. This again is the best estimator of X given Y, and ‘a can be
any function of y such that the cost is minimum.

If we had to restrict ‘@ to be only a linear function of Y, then we would be basically
trying to minimize E[(X —aY) %] and ‘& comes out to be

a= E[XY]
E[Y 7

We notice that this expression is the exactly the same as that for — the scalar ‘a, when
two vectors y and x are given and we want to fit them together (we would scale one of
them by athe scalar ‘a).

We redlize that random variables are vectors. They can be scaled and added just like any
two vectors and the above expression enforces this fact.

What remains to be seen is why would we want a linear estimation for X as opposed to
the best estimation.

1. Onereasonisthat it ismathematically simpler.

2. Alotlessdataisrequired for the linear estimate than for the best estimate. For the
linear estimate we just need E[XY] i.e. iscovariance of X & Y (if X , Y are zero
mean) whereas for the best estimate we need the entire joint pdf.

3. In alot of cases, the linear estimate is the best estimate, so basicaly it is good
enough.
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Summary of the lecture

We continued the theory of joint probability function, and understood what is meant by covariance of two random
variables.

Then, we discussed how to express a random variable X as linear function of another random variable Y, mini-
mizing the error in the L2 sense.

Then we extended this to a more unrestricted case where we expressed X as an affine function of Y. This yields
an estimation technique called Wiener’s method. Lastly, we extended this to a case where we express a random
variable X in terms of N other random variables

Recapitulation of the previous lecture

What we saw in the last lecture is that associated with every random variable, is a belief structure, called its
probability mask function or the probability density function.

When there is more than one variable their combined random variable is described in terms of the joint probability
distribution.

Then we saw the concept of marginalization and conditional probability distribution.

Finally, we saw what is expected value of a random variable. We also found that if we were to predict a value for
outcome of a random variable X, such that the error (X - guessVal) is minimum in the mean square or L2 sense,
and then the guessVal should be the expected value of X.

If we restrict ourselves to X being estimated as a linear function ”aY” of another random variable Y, then best
value of 'a’ = E[XY]/E[Y?]

Covariance of Random Variables
What is the meaning of the symbol ”E [XY]” that we saw last time ?

XY is a random variable such that it takes the outcome of variable X and multiplies it to the outcome of variable
Y, and that is the value of random variable XY.

The expected value of the covariance of X and Y, namely E [XY] cannot be expressed in terms of E [X] and E
[Y]. Let us see why.

Consider the examples given below

1. A coin is tossed. Suppose X is the random variable such that the value of X is +1 when the coin lands heads
up, and has value -1 when it lands tails up.

Suppose Y is the same coin toss. Assuming a fair coin, the joint probability function is as shown below in figure
1.

E[XY] =05 * (1)(1) + 0.5 (~1)(—1) = 1 But, E[X] = 0 E[Y] = 0

2. Consider X to be outcome of a fair coin toss, same as X above. But Y is another coin toss, this time. So both
the random variables are independent of each other.

The joint probability function would be,



Figure 1: Joint Probablility distribution of two zero mean dependent random variables

E[XY]=05x(1)+0.5%(—1) = 0 But, E[X] = 0 E[Y] = 0

So, these two examples show that the E [XY] cannot be expressed in terms of E [X] and E[Y], as for the same
values of E [X] and E [Y] different values of E [XY] are obtained.

In fact, random variables can be uncorrelated even if they are not independent. So if X and Y are independent,
then surely they are uncorrelated. But, converse is not true, i.e. if X and Y are uncorrelated it does not necessarily
imply their independence.

Mathematically,

EXY]= [ [Fxy(zy)zy.dy.de

Ty
Linear Estimation Technique

If we were to estimate X using a vector of real numbers 'a’; then ’a’ is the vector that contains the centroid of
each row.For each Y=y , the row would be some values. The centroid of , say row Y=42,is the best estimate a;
is the best estimate,i.e. a; = E[X|Y = +2],a2 = E[X|Y = +1]....

Refer to Figure 3.
The curved line ’a’ is the vector that minimizes the function (X-a).

Suppose we have to estimate the random variable X using a variable Y. In this technique we try to find out real
numbers ’a’ and ’b’ such that the error function ”X - aY - b ” is minimum in the L2 sense.

We recall that if X is independent of Y, then the scale 'a’ = 0, and b is simply the expected value of X. This is
the first case discussed in the previous lecture, when the error function is (X - b).

But in general X and Y may not be independent.

Suppose X and Y are zero mean random variables. Zero mean random variables are ones whose expected values
are equal to zero. Then, we can prove that 'b’ is 0. Why this is so is simple to see. We know that X =a Y + b.
So E [X] = a E[Y] + b, If E [X] = E[Y] =0, then b =0.

This implies that line aY + b passes through (0,0).



Figure 2: Joint Probablility distribution of two zero mean independent random variables

Mathematically,

E[(X —aY —b)?]

= E[X?2+a?’Y? +b? — 2aXY — 2bX — 2baY]

= E[X?] + E[a®Y?] + E[V*] — 2E[aXY] — 2bE[X] — 2bE[aY]
Taking partial derivatives w.r.t a and b, we get

a= E[XY]/E[Y?

as, E[X]=E[Y]=0

and

b=E[X]-bE[Y]=0

Now, suppose that X and Y are not zero mean random variables, or E[X] and E[Y] are not zero. The line 'X =
aY +b’ is say somewhere , (in Fig 4, as line 1).

We can prove that line '’X= aY +b ’ passes through (E[X] , E[Y]).

Let us make the random variables X and Y zero mean. This means we arithmetically shift the outcomes of X
and Y by -E[X] and -E[Y] respectively.Now, that line stays where it is , but the labels of each row and column
have have changed. So, the co-ordinate system has shifted. Now, we know that this line 'X = aY + b’ has to
pass through (0,0) in the shifted co-ordinate system.This corresponds to line 2 in Fig 4. The point now called
(0,0) was called (E[X] , E[Y]) earlier.So that line passes through (E[X],E[Y]) in the ”unshifted” system.

So, we know that X = aY + b’ always passes through (E[X] , E[Y]).
E[X] = aE[Y]+ b This implies that b = E[X] — aE[Y]

To find ’a’, We try to minimize the mean square of error function E [(X — aY — b)?]. If we do so we would find
that we obtain a similar result as in the case of zeromean random variables.

a=E[(X - E[X])(Y — EIV]D]/E[(Y - E[Y])?]



Y = +2 7)a1

Figure 3: Expected Value curve, where expected values are a vector of real numbers

and the constant shift is,
b= E[X]—aE[Y]

This is just the same as for zero mean random variable case but for that both random variables are shifted by
their expected values.

This method is called as Wiener’s method of estimation.

Why is the linear estimator used?

1. Tts computationally faster to compute and is easier to apply. This is so because we just have to calculate
scalars ’a’ and ’b’ rather than functions. Once we have a, b it is just a multiplication and an addition to get a
vector element of estimated X, rather than a table lookup.

2. The estimation can be done with much lesser data, i.e. only E[XY] and E[Y?].

3. Many times it so happens that even the unrestrained vector is an affine function of Y. So in such cases, we
might as well save computation time by estimating using linear or affine estimation.

Y estimated as a linear combination of N other random variables

Suppose we want to estimate the random variable Y using a linear combination of random variables X7, X5.. X .
This can be viewed as estimating the value that will come out of the unopened box , given the outcomes of N
other random variables boxes.

So,
Y=a1.X1 +a2. X0+ ....any. XN

Again, in this case we will try to see what values of a’s will minimize the mean square estimation error. The
error function is

Yy —ATX

where A is a vector of real nos. ,Y is a random variable and X is a vector of random variables.



Lilne 2
Line 1

(0,0

(b, 0)

R X = a¥Y + §

Figure 4: Expected Value curve, where expected values are "aY + b”

A:(a1 as . . )

The expected Value of

E [(Y — ATX)?]

is to be minimized

E[(Y — ATX)?)

=E[Y? -2YATX + ATXATX]

By Linearity of expectation,

= E[Y?] - 2ATE[XY] + E[ATX AT X]

Since ATX

=XT4A

So, using this to modify the last term of the above equation,
= E[Y?] - 2ATE[XY] + E[ATX XT A]

= E[Y?] - 2ATE[XY] + ATE[XXT]A



This is a familiar quadratic in A. The solution of this is,
A=E[XXT'E[XY]

This is again very similar to the result we obtained in the 2nd lecture, except that now we have shown the same
concept in terms of random variables, i.e. in the vector space defined by random variables X Y.

The application of this result will be seen in the coming lectures.



Random Processes

30th March 2004

Summary of the lecture

We defined the term random process.

We said that we want to predict it, using something called a Wiener filter.

We defined a class of random processes, called stationary random processes, that are especially
suited to Wiener prediction.

We defined filtering of a random process, and discussed what happens to a random process when
it is filtered.

We defined the power spectrum of a stationary random process.
Random Processes
A random process is a sequence of random variables.

Usually we look at this sequence as time-ordered. Suppose there is this guy with nothing else
to do, tossing a coin every second. Associated with each time ¢, there is a random variable—the
result of the coin toss. Before he starts tossing coins all the results are unknown and therefore
random variables. At time t,, the n'* random variable is “opened”.

Because there are infinitely many random variables in a random process, the PDF is not defined
as an infinite dimensional table, but by defining the PDF of every finite subset of the sequence.
So there are (infinitely many) finite dimensional tables now.

Prediction of Random Processes and Stationarity

We are interested in random processes because we can use them to model things like speech, and
then use this model for compression.

The idea of compression is to predict the next outcome of a random process, and then transmit
only the error between the actual outcome and the prediction. If our prediction is good, the
error will have much less energy, so fewer bits have to be transmitted.

One method of prediction, called Wiener prediction, is to predict an outcome by a linear combi-
nation of the previous n outcomes. The coefficients in this linear combination must be constant
numbers—we can’t change them for every prediction.



Consider what Wiener prediction does:

Random vari abl es: I:l I:l I:l I:l I:l T I:l I:l I:l I:l

Predi cti ons

Qut cones
Figure 1: Wiener Prediction

Shown above are two predictions. Each uses the previous three outcomes, weighted by the same
numbers ag, a;, and as.

What kind of processes are suitable for this kind of prediction ?

The a’s depend on the joint PDF of the random variable being predicted and the one being used
for the prediction. So the suitable processes are ones where any random variable X, has the
same joint PDF with the previous three random variables X,,_1, X,,_o, and X,,_3.

Such a process is called stationary of order 3. In general you can have a stationary process of
order L, where the joint PDF of X,, and X,_; is same for all n for each i <= L.

If a process is stationary of order L it is stationary of all orders less than L. A process that is
stationary of all orders is called a strict-sense stationary process.

Strict-sense stationarity is a very restrictive. Not many real life random processes are strict-sense
stationary. Instead, a wider restriction can be made on the random process. Instead of saying
that the entire joint PDF of X, and X,_; should be same for all n, we will merely say that
E[X, X, _i] should be same for all n.

Such a process, where F[X, X,,_;| depends only i, is called a wide-sense stationary process.
Henceforth when we say “stationary process”, we will mean “wide-sense stationary process”.
The auto-correlation function
Define

Vo (i) = E[XoX;]
Properties worth noting:

1. Yau (i) = Yau(—1). (Because E[XoX;] = E[X;Xo].)



2. 7.2(0) is the variance of X, (or any X;, because they all have equal variance).

3. Y2z(0) > 742(7), Vi. (Because nothing can be more correlated with a random variable than
that random variable itself.)

4. If 7,2(0) = 4,2 (k), then ~,, is periodic with period with k.
Filtering of Random Processes

Take a random process x, convolve it with a filter f, and you get another random process y.
Going to the analogy of closed boxes, this new random process consists of boxes which when
opened cause some boxes in the original process to be opened and added up using the gather

| ) n 000

y OOOoOo0Oo0ga

Figure 2: Filtering a random process makes another random process

If x is strict-sense stationary, then so is y.

Define a white noise process as one in which all the variables are uncorrelated. The autocorrelation
function looks like the Kronecker delta:

If x is white noise, what is kind of process is y ?
For example if f is of order 3:

Yo = foX_1 + f1iXo + foXa

Since the E[X;X;| =0 for i # j,
E[YF] = E[f§ X2, + fi X5 + [3X7)
Therefore:

Vyy(0) = Z fi2

Next,
EYoY1] = El(foX_1 + fiXo + f2X1)(foXo + X1 + foXo)] = fofi + fife



Therefore:

Vyy(l) = Z fifi—i—l

Similarly,
Vo (J) = Z fifivj =1rr(5)
And so y is wide-sense stationary.

Now consider what happens if x is wide-sense stationary. We will prove that y is wide-sense
stationary and find a relation between vy, V35, and rs¢.

Consider an example f of order 3.

Then:
ElYF] = E[(foX_1 + fiXo + f2X1)(foX_1 + fiXo + foX1)]

’Yyy(o) E[Y2 (’Ym Zf ) (’Ym(l)zi:fifiﬂ) + (%m Zfzfzﬂ)

Next,
EYoY1] = E[(foX 1 + fiXo + foX0)(foXo + X1 + foXo)]

(1) = BYoYi] = (.(1 Zf) (m<o>;fifi+1)+

We can see that :

|7yy = Vaz * 7ﬂff|

In the Fourier domain this is:

Iyy =Tsz0Ryy where o denotes pointwise multiplication.

But since rp; = fx [, s0 Ry = F o F' =|FJ2. So,

Pyy =140 ‘F|2

I',. is called the power spectrum of x.



Lecture 14: Stationarity and the Innovations Process
Date: 30" March 2004
Scribed by Aditya Thakur

Why isnoise ‘white' ?

Most noiseis from 'seemingly' independent processes.

eg. The 'hisss sound caused due to turbulent flow of air seems to be made by independent
particles though they are interacting with each other. The same can be said about the
weather.

So basically two samples may be chaotically related with each other, giving us the
impression that they are actually doing something 'new’ every time (i.e. random).

Another important source of noiseis Electron noise.
There are 2 basic types of e- noise:

1. Ensemble noise: the buzz of the e-

2. Shock Noise': which is arandom point process

Why does some noise get colored?

Basically, noise gets coloured due to filtering (as we saw in the previous lecture). So what
sort of filters are we talking about here?
Let uslook at asignal passing through the conductor...

* We have the white noise due to e-

* Then you have the distributive capacitance which acts as a high/ low pass filter
depending on current/voltage.

« And of course, you have the induction wall interference® (multipath conduction)
which causes symbol distortion (overtaking of symbols). We saw this with respect
to fibre optic cables, where different wavelengths used to take different paths and
suffer different reflections on the walls of the cable.

So these filters acting on the white noise produce enough correlation to give the noise
‘colour’.

| nnovations!

What we will show now isthat given a stationary random process Y having correlation
Vv , Wecan get acausal, stablefilter f such )y, =ry .

What thisimpliesisthat we can take a white noise process, filter it with f to giveit the
samecolour as'Y.



White noise process

f

/\ ﬂ Coloured process
N -

Figurel: A white noise process when filtered givesthe coloured process

If f ! exists, passing Y through f ~* we get an uncorrelated process Q, which will have

the same information but has lesser energy. By having the same information, we mean
that we can get Y back from the Q.

So how do wefilter a stationary random process Y to get an uncorrelated process?

Y

Figure2: Linear prediction of X usingY.a,, a,, a,,... arethefilter coefficients.

Widll, if wedo linear prediction, then the error we get is orthogonal to the signal used to
estimate it. Lets use this fact and see what we can do:

ds o)) 1

Figure3: Thefilter which givesthe error corresponding to the optimal linear prediction



Looking at the above figure, we see that
1. q;isorthogonal to all the blue ys and thusto all vectorsin the subspace of the

blueys..
2. e isalinearly dependent on the same blue ys. And hence lie in the subspace of

the blue ys.
From 1 and 2, we see that g isorthogonal to g, (and similarly to gz, qa, ...).

Tadaal We have Q, our uncorrelated process got by filtering Y. Q is often called the
innovations process generating Y.

Thefilter a,, a,, a,,... iscalled the Wiener filter, and is the optimal linear prediction

filter.
Thefilter 1,a,, a,, a,,... is° the Whitening filter, and is the prediction error filter.

The inverse filter would be called the Colouring filter.

Colouring filter

/|

»
|

\ 4
—n
|

N

White noise

. . Coloured process
innovation

’AWhiteni ng filter

Figured: Innovationsrepresentation of WSS process

d
<«

Now what we have to show isthat this Q exists for al stationary random processesi.e.
the wiener filter exists, is causal and stable.

Before we go on to that, letslook at the applications of the existence of such a
whitening filter f .

Suppose you have a speech signal to be transmitted. Y ou passit through a whitening filter
to get the uncorrelated signal. Now you only send the filter coefficients across.

At the other end, you take an ‘equivalent’ white noise process, passit thorigh f ~* to get
the original speech signal. This may sound (no pun intended) alittle fuzzy, but what they
would do is model the innovations process of all speech signalsin some way and useit;
also the human ear is quite tolerant so the reconstructed speech signal would pass off as
the same signal.



Anyway, getting back to the proof: fs
Given r, , wecan find thefilter f having that autocorrelation (wherer  is Vyy ).

We are given®
f*f=rg

Taking Fourier transform
FF = R,

Great! We have the magnitude. If we put any phase, we' re through!
Not quite.
We have shown that we can get thefilter f , but our main goal should be to get a causal

stablefilter whose inversefilter exists and is also causal and stable.

Taking logarithms on both sides,
log F +log F =log R,

If,

q=rel
logg=1logr+ ja
logg=logr - ja
O log = log g

Using the above resullt,
log F +log F =1log R

Let

log F =G
log R, =S
G+G =S

Taking Inverse Fourier transform

-

g+g=s

We can see that sis symmetric
Let ustake g to be the positive half of s.

What we will now show isthat if g (called the cepstrum) iscausal, thensois f .
We will assumethat G isanalytic and is expressed by the Laurent series



G=g,+0,2+9,2° + ...,
which form the Fourier transform coefficients of g.

Now,
F =antilogG

Thisimpliesthat F is also analytic and can be expressed as
F=1»f,+fz+ f,z°2+.

So f,, f,, f,,... isthe sequence that has F asits z-transform, which is the required
causal filter f .

Further, G being analytic also impliesthat f isaminimum phasefilter, which implies
that if f isarational function of z, then it has astable and causal inver se.

Udayan’s notes:
! “Shot Noise”
2“Inter symbol interference”!!!

*1-a,,-a,,~a,,...
“Thesymbol f (read“ f flipped”) stands for the time-reversed f . f(n) =f(-n).



Weiner Filtering

WHAT ISAR RANDOM PROCESS?

AR process is a stationary random process whose coloring filter is
Auto-Regressive(AR). Thus the present output is alinear function of
previous outputs plus some innovation. The innovation can be white noise.

innovation

al

AR Random Process

AR(p) denotes afilter with ‘p’ polesfor the corresponding AR random
process. An AR(p) filter will have corresponding MA(p) inverse or
whitening filter.

Now even though, we have infinitely long auto-correlation filter. But
its corresponding de-correlating filter isfinite.

POWER SPECTRUM ESTIMATION:
What isthis?

Power spectrum estimation means estimating the Fourier Transform
of auto-correlation function.

Why?

At atime, we'll have only finite samples of arandom processin hand
and we'll have to estimate the power spectrum from that may be for some
prediction.



Ways of Power Spectrum Estimation:

1.

2.
3.

Finding the auto-correlation function of the random process and
taking its Fourier Transform.

Directly estimate the power spectrum.

First, we find the whitening filter. Then we invert it to get the
corresponding coloring filter. From the coloring filter, we find the
auto-correlation function of coloring filter which is the auto-
correlation function of the stationary random process. In many
applications, we don’'t have to go back to power spectrum from
whitening filter. We can get Weiner filter directly from the
whitening filter.

Estimate Reflection coefficients of lattice filter.

METHOD:

We have outcomes and we have an AR random process. We trying to
estimate the coloring filter for this process provided order ‘p’ is known.
We can do this using Least Square Deconvolution.

X0
x1
x2

X3

X MA Filter x-adv

—

Prediction of new sample as linear
combination of previous samples

xlI x2 x3
X2 x3 x4
x3 x4 x5
x4 x5 X6

WEe'll estimate using MA filter. But as input x and output Xy, are
same. It isactualy an AR filter.



AR coefficients = MA coefficients

Now we want best estimate with whatever samples we have in hand.
Suppose, we have 25 samples viz Xo.... X4, then we'll get nice estimate
for the 1-step correlation i.e. correlation between X, and X4, X; and Xo .....
and so on till xo3 and x»4. Thisis because we have 24 pairs for the
interval of 1. But for 23-step correlation value, we have just two pairs Xq
and Xy3, X; and X»4. Thus more no of samples means better estimate.

So for LMS, we give X, Xagy and Xpackward 0 1NCrease the no of samples.
Thisisvalid because stationary random processes |ook the same from
backwards.

X0 x1 x2 x3
XL x2 x3 x4
X2 x3 x4 x5
X3 x4 x5 X6 -
x4 x3 x2 xi

x5 x4 x3 Xx2

Here al,a2,a3,a4 are the coefficients of prediction filter. We can get
whitening (prediction error filter) filter by putting 1 in present sample
and negating previous coefficients.

Consider Z-domain,

Here the prediction filter will be-
aqZt+az? +az >+ a2

the prediction error filter will be —



1-azt-az?-az3-az™
the corresponding coloring filter will be —

1
l-aZ-az -2z -az "

flipped coloring filter will be-

1
1-aZ -az’-az-auZ"

We have to convolve these two filters to get the power spectrum in
rational form. Convolution will be Multiplication in z-domain.

So the rational function for power spectrum will be-
1

(1-az'-az-az>-az ) 1-az'-az’-az’- az?)

MA Processes.
For these processes, coloring filter is MA so corresponding whitening
filter will be AR.

ARMA Processes:
For ARMA processes, both coloring and whitening filter will be
ARMA with poles and zeros interchanged between them.

WEINER Filtering:

Welner filtering is estimating a random process from few other
random processes. Prediction is a special case of Weiner filtering where
same random process is estimated in advance from previous samples,

Jointly Stationary Random Processes:
X and Y aresaid to be Jointly Stationary Random Processes if and
only if-
1. If X isastationary random process.
2. If Y isastationary random process.
3. If the cross-correlation r,y(k,|) depends only on the difference (k-1).



Jointly Stationary Random Processes X and Y

In the above figure, we can see two jointly stationary random
processes X and Y. The correlation values shown by same color are
equal. So we can seethat X and Y are independently stationary plus their
cross-correlation is a'so same for same interval. This makes them Jointly
stationary random processes.

If two processes are jointly stationary, then we can design the Weiner
filter for them.

FIR Weiner Filter:

If we have two jointly stationary random processes X and Y and we
want to predict Y from the samples of X. We now have auto-correlation
of X and cross-correlation between X and Y.

Here

The auto-correlation of X isgiven by-
E{x(n-)x*(n-k)} = ry(k-I)

The cross-correlation of X and Y isgiven by-
E{y(n)x*(n-k)} = rqy(k)

Now if ‘W’ isthe Weiner filter response, we have-
w * M = rxy



rx(0) rx*(1) ....... rx*(p-1) w(0) rxy(0)
rx(1) rx(0) ....... ix*(p-2) w(l) rxy(1)
X2 mx@2) ... rx* (p-3) w(2) rxy(2)
X(p-1)rx(p-2)  ....... rx(0) ) (w(p-1) rxy(p-1)

SO
W = E[XX'] TE[XY]

Causal [IR Weiner Filter:
Now we want to design acausal |IR Weiner filter for prediction of a
random process Y from samples of another random process X.

X
h
W
q
\%
Y

Wefirst calculate W which isfiltered version of X. W isthe
innovation process of X. Now X and Y are jointly stationary, hence W
and Y are also jointly stationary.

Now we have cross-correlation of X and Y. But we need cross-
correlation of Wand Y.

E[Wi.i Y] = E[ (Xniho + Xni-aha + Xnioho + ...0) Vi)



h0 E[Xn-i Yn] +hl E[Xn-i-l Yn] +h E[Xn-i-z Yn] ...

Ny(i) Nolwy(-1) + Narey(-i-1) + ..o
My =N* Iy
q(i) = E[TW(n-i)y(n)] = ruy(-)
aswe want causal filter only,
q = [flipped ryy]+
= [(flipped ryy) * (flipped h) ]+
h*q=h* [(flipped ry,) * (flipped h) ]+
Here h and g both are causal so even (h* q) isaso causal.

UNREALIZABLE Weiner filter (Non-Causal):

X

Y

Non-Causal Weiner Filter

Here we have all boxes( analogy!) open. So we know all samples of
X. So now comapared to previous case of causal filter, we have

q = [flipped ryy]
h*q =h* [(flipped r,,) * (flipped h) |

h*q =h* (flipped h)* (flipped ry)
Soin Z-domain —

H@Q®@  =Rmlyx



let ‘g’ beinversefilter of h. Then Ryy will be auto-correlation of X.

=[yx / Ry

H(Z)Q(2)=yx / [xx

Weiner Filtering for noise removal:

N

Removal of noise from the past samplesisalso called
smoothing.

E[XX¢i] = E[(yt +N) (yei+Nei)]
= E[(ye yei)] + E[(Ne Nei)] + E[(yr Nei)] + E[(yei N
Feci) = Tyy(i) + ran(i) + ryn(i) + (i)
Now last two terms are zero cause noise is most of the times un-

correlated with signal Y.

If noise is white noise, then ryy(i) is adeltafunction.
E[Y Xui] =rw(i)
=E[Y Y] + E[YNu]

Ny(l) = ry(i) +ryn(i)

W
@ filter ..

adv



Power Spectrum Estimation

There are basics representations of signal which can be converted to other one in different
ways.

Auto-correlation Power density function

Y% B

a K

Coloring Filter coefficients Reflection coefficients

Methodsto find Time-Average auto-correlation function
Unbiased estimation method
Here we partly open the boxes and find the auto-correlation such that

E[XnXni]= A XnXn-i
n

1 2 XnXn-i n going fromito N
N —i
2
Herevarianceis E ([1% term —2"term])
Sincethere arefew data points for larger lags we have more variance a larger lags.

Biased edtimation method
E[XnXn-i] = N-i E[XnXn-i] ngoing fromitoN
N

Thisissmilar to windowing signd (auto-correlated) with atriangular window and doing
average.
Less variance than unbiased estimate.



Rd ationship between Energy, Power spectrum and Periodogram.

Periodogram is Fourier transform of average (windowed) auto-correlation function.
Expected vadue of Periodogram is Power spectrum.

So by averaging Periodogram we get the Power Spectrum of signd.
Also in direct method by taking Fourier transform of auto-corrdation function we can get the
Power spectrum.

Auto-correlaion givesthe energy spectrum.

Non-parametric methodsfor Power Spectrum Estimation

1. Bartleit Method
In Bartlett method we divide the signd into blocks, find their periodograms and average
them to get the Power spectrum. (The data segments are non-overlapping).
Thefinal effect istrue power spectrum convolved with awindow.
Dueto windowing (leakage frequency due to side lobes) the frequency resolution islow.

2Wedch Method
It is same method than above with some modifications—
) Data segments can be overlapping.
1)) Window the data (signd) before computing Periodogram (we may use different
windows for each segment)
This method has got better precision but less frequency resolution than Bartlett method.

3. Blackman-Tukey Method
In this method we windowed the auto-correl ation sequence and take Fourier transform to get
power spectrum estimate (Periodogram) in effect we smooth out the Periodogram.
It has better variance (even at large lags) and better precision than above two methods.
But frequency resolution islessthan the others.

Parametric method for Power Spectrum Estimation

Theme:

In these methods we assume that Sgnd is output of asystem having white noise asan input .
We mode the system and get its parametersi.e. coloring filter coefficients and predict the

power spectrum.

Y ule-Waker method

We egtimate the Auto-corre ation. then wefind the‘a s coloring filter coefficientswhich are
moded parameters.

Tofind the‘a swe use Levinson-Durbin algorithm.

From these & swe again find the Y and then Power spectrum.



Burg Method

We have seen the lattice filter equations for forward and backward prediction error filters.

Qs(n) = Qa(n) - KaRa(n-5)

Rs(n) = Ra(n-5) - K4 Qa(n)

Qistheerror quantity (least square).
Soif weminimizethe error by sdecting K we can model the‘a’s

For that we predict the K1 and using this we find other reflection coefficients using same
lattice structure.

Using Levinson-Durbin algorithm we model the system and find the ‘& s from which we
can get the power spectrum estimate.

Predict : K1 =(autocorrelation of x(n))/(energy in x(n))

And we can find the

Ka= -<R4dday5Q4>
<R4, R4>

Using property that forward and backward coefficients are the same one

Ka= -<R4dday5Q4>-<0Q4 R4dday 5>
<R4,R4> + <Qa4, Q4>

Thuswe can find R1 and Q1 from K1...then K2 fromR1and Q1 ...thenK2 and so on...

From K’swe find a's and the Power spectrum.
This method has higher frequency resolution and computationdly efficient.



Lecture Date: 16™ & 17" Apr ‘04

Solving Least Squares

The problem

Given a vector Y and a set of basis vectors A = {aj,az,...an }, we want
to find the measure of Y in terms of A i.e. find M such that

MA =Y

The vector space spanned by Y and A differs, giving us a set of over-
determined equations. So, we find an M such that

[| Y - MA || is minimum.

So, we are basically trying to - find the shadow of Y in the subspace
spanned by A, and also find the linear combinants, which add up to
that shadow. This is illustrated by the figure below. The vectors in red
are the linear combinants in the direction of al & a2.

Y

v

The vector in pink is the shadow of Y in the subspace of A. ‘e’ is the
error, which is orthogonal to the subspace spanned by A.

We notice that if the A is an orthogonal basis, the solution to the
problem is simplified. If the basis is orthogonal, then the linear
combinants are just the coordinate values of Y (the analysis and
synthesis matrix is same).

Mathematically, the same can be justified by the fact that the inverse
of an orthogonal matrix is its conjugate transpose.

To find the linear combinants we need the inverse of the basis matrix
as shown below.



AC =Y, Cis [ A1, Aa....., Ay], the scales by which each direction in A
needs to be scaled so that they all add up to Y.
C=A1Y.

Thus the least square problem is reduced to finding a set of orthogonal
set of basis Q such that

Span{Q }=Span{ A}

i.e. a set of Orthogonal vector space spanning the same subspace as
that of the given basis.

For example in a 2-D subspace, it can be shown as below. q1 and g2
are the normalized orthogonal vectors for the subspace of al & a2

a2

g2

v

gl al

Therefore we have different methods of orthogonalizing the basis
vector A.

I. Graham Schmidt Method

This is the successive orthogonalization (the QR method).
Let A contain n linearly independent vectors. We want to find the
orthonormal basis for A

gl is al/|al]

Y

»
|

gl al

For a2, we take the projection of a2 on al, to find the orthogonal
vector g2

a2

g2
; ”—

gl al

v



0 g2 =a2-projofa2 onal/|a2 - projofa2 onal|

g3 is a vector orthogonal to subspace of al& a2. Its simple to see this
a least squares problem. (given vector a3, and need to find its shadow
in al & a2, so that we can find the direction of the error which is
orthogonal to al & a2)

Hence we use the orthogonal vectors ql1 and a2 to find g3.

First we drop perpendicular to gl and g2 (refer to the figure below)
shown in blue. Assume a3 is coming out of the monitor.

g2

a3

»
»

gl

Now, if we look at a3 to be made up of 2 parts, 1 which lies in the
subspace of ql, g2 and the other remaining is the component
orthogonal to q1 & g2.

By, dropping perpendiculars on gl and g2 we find the projection of a3
in g1 & g2. Since gql,q2 are ortho to each other, these projections
when added up will give the shadow of a3 in g1 & g2. Subtracting this
from a3 gives us the component that not in q1 & g2 i.e orthogonal.

In the figure, the shadow of a3 is in red.
0 gl =al
0 g2 = a2 - proj q1 a2
[0 g3 = a3 - proj q1 @3 - proj q2 a3
The same can be shown by the following transfer network

A can be considered to be made of 2 vectors Q and R, such that

A = QR, Q is the orthogonal basis and R is an upper triangular matrix,
which is the transfer n/w shown in the figure.



The reason it is easy to invert A is that triangular matrices are simple
to invert.

A >

%%g
O

We have the linear combinants of Y in terms of Q, namely Y’s
coordinate values. But, what we actually want are the linear
combinants in terms of A. This can be done in a simple way shown by
the figure below.

Q~>

A

g3

Yq3 Ya3

We find the projection vector of a3 on g3. (Note, for a 3-D space, only
a3 can have any energy along g3). We use the same proj vector to
find a vector along a3 such that Yg3 is its projection. By similarity we
see that this all the energy Y can have along a3. We subtract this from
Y, so the only components left in Y would be of al and a2. They can
too be found in the same way.

Why this method is not that good

It is easy to see in this method that the error seeps through. If we
have to find the Q for n vector space, the final error is n times as large
as the initial error.

Solution: Modified Graham Schimdt’s Method

Similar to GSM, but after finding an ortho vector gn, we find the
energy of each remaining vector in A along gn and subtract this
energy. It is easy to see that the two methods are equivalent, but the



energy is reduced stepwise from each vector. This gives better
numerical results.

Why both methods are bad

For ill-conditioned vectors, we get numerically bad results. Consider
two vectors very close to each other, the result after subtraction has
low resolution, giving bad results.

//} <——  Not accurate

IT Givens Rotation

Instead of finding the orthogonal basis, we start with an orhto basis
and then rotate it into to mach the given subspace. The error here will
be because of the fact that the subspaces spanned by the 2 basis may
not be identical, but the error doesn’t get amplified proportionally to
the no. of vectors in the basis.

The important thing to note here is that are doing planar rotations, so
at a time only 2 co-ordinates changes, the ones which are in the plane
of rotations

We need to match q1 with al, g2 with a2 and so on. We do this in
steps.
1. Take al and rotate it into g1 (the inverse rotations are the ones
required to rotate gl into al).
2. Then we rotate a2 into the plane of gl & g2 such that not
component along g1 does not change.
We successively do this till A is rotated into Q.

Consider a 3-D space. If we want to rotate al into X axis, we could
first rotate in the X-Z plane and then in the X-Y plane or first in the
X-Y plane and then in the X-Z plane. We choose the following method

Choose the plane with one axis as the one you want to zero out,
and the other the axis which we want to move into.

For a 4-D space



all a2l
al2 az22

al = a2 = and so on.
al3 a23

ald a24

For moving al in q1, we want to zero out al4 component, so choose
the al1-al4 plane of rotation.

cosd 0 0 sno
1
O Rotation matrix = 0 0
01 0
-sn® 0 O cos®d

A

N
ARy

Then we use all-al3 plane of rotation followed by all - al12.

ald

For rotating a2 into X-Y plane, we have to ensure that X component
is not in the plane of rotation.

So, we choose a22 - a24 as plane of rotation and then a22 - a23
as plane of rotation.

We want to solve for ‘X’ using least squares

- A=QR

QRx =B
Rx=Q'B (Q=Q")
x =R1 QB

Since, we need the inverse of Q anyway, we do not solve for the
inverse rotations. The above rotation matrices are Q!, and the upper
triangular matrix formed by applying these transformations to A, is R.



Householder Reflections

“No our reflections are upside down, left-right flipped, back-fwd
flipped. The man in the mirror is actually an alien, with no symmetry
or is it up down symmetric. It's all about how we turn!”

“Dabum dubum thubum...!”

Householder Reflections

The reason we use reflections to match the orthogonal basis to A, is
that reflections are less expensive than rotations.

" <«—— Plane of mirror

|al|ql

Therefore, r1 = al - |al | q1

We want to reflect A in the direction of r1.

This is given by ri' A. If we think of A to consists of two parts, one
component along in the mirror, and the other ortho to it. So, the
component in the mirror does not change, and the other gets flipped.

Therefore, after flipping we get -ri" A.
Then we reconstruct the vector i.e -rir’ A
The component that doesn’t change is A - riry' A.

O the final vector is the addition of these two vectors

A—rlrlTA—rlrlTA
= (I—2r1r1T)A

For, reflecting a2 into g2, we must ensure that component along g1l
doesn’t change. So, we flatten this dimension, so that it is just point
and lies in the mirror.



a2l
az22
a23
az24

Thus Q is the matrix formed by (I - r r' ) and R is the triangular
matrix formed transforming A.

<+—— Don't consider this component
a2 =



