

The Master Method 1/24 © Udayan Kanade

The Master Method

While analyzing algorithms, we come across various types of recurrences. For
example, here is a particular recurrence.

Equation 1 n
n

tnt +�
�

�
�
�

�=
2

2)(

Question: In the analysis of what algorithms does this equation occur? Think
of as many places as you can where this equation will be used.

1

One of the places the above equation occurs is in the analysis of the merge
sort.)(nt is the time taken by merge sort to sort n elements. Equation 1 says
that the time taken to merge sort n elements is the time taken to merge sort
two sets of 2/n elements plus the time taken to merge the two sorted lists
(which is n).

Another place the above equation occurs is in the best case analysis of quick
sort. In the best case, the quick sort pivot lands exactly in the center, dividing
the set to be sorted into two exactly equal sorts. For the quick sort, the
equation says that in the best case, the quick sort on n elements does a
separation pass (taking time n) followed by two quick sorts on 2/n elements.

The same equation will occur in many more algorithms. Equation 1 is in fact
one of the most commonly occurring recurrences in algorithm analysis.

Solving recurrences is a major part of analyzing algorithms. Recurrences
generally occur directly due to recursive algorithms. Recurrences can occur
due to other reasons also. (In fact, even if we were using the iterative merge
sort, we could analyze it using the same recurrence relation.)

Question: What is the solution of the above recurrence?

1 The blue horizontal fence means you should stop here and think before continuing.

The Master Method 2/24 © Udayan Kanade

Those who remember merge sort will quickly realize that the solution to the
above recurrence is)log()(nnnt θ∈ . Once we know that this is the solution, we
can easily prove this using constructive inductiona.

The question is how to come up with)log()(nnnt θ∈ in the first place? Is there
a general method by which we can just look at a recurrence and say what the
complexity is going to be? This document is about such a general method. It’s
called the Master Method.

Before we go on to learn about the Master Method, let us try to analyze merge
sort further for a bit.

Question: Why does merge sort take)log(nnθ time? Can we visualize the
complexity of merge sort?

2

Look again at the recurrence relation

Equation 1 n
n

tnt +�
�

�
�
�

�=
2

2)(

The merge sort “sorting action” all happens in the “merge pass”, in the
“conquer” of the divide and conquer methodology. That is, it is the n+ factor
in the above equation at various levels of recursion that together causes the
merge sort time complexity. If we were to draw all these n+ s at all the levels
of recursion, we will get a “picture” of the complexity of merge sort.

Question: Try to draw this picture of the complexity of merge sort.

2 This document would be most beneficial if you tried to answer the blue fence questions
yourself.

The Master Method 3/24 © Udayan Kanade

Figure 1: “ Picture” of the complexity of merge sort

Question: Label this figure in your mind. What does every element mean?
Can you argue using this figure that the complexity of merge sort is)log(nnθ ?

3

Figure 2: The complexity of merge sort is)log(nnθθθθ

Figure 2 is Figure 1 redrawn to show how the complexity of merge sort is
distributed among the recursion levels of the merge sort. The top level

3 It is a good idea to hold a paper below the blue fence, so that you do not strain yourself
trying hard not to look below it!

merge time = n

n/2

n/4

1 1 1

n/4

n/2

Recursion
Level

0

1

 .
 .
 .

log n

log n

n

The Master Method 4/24 © Udayan Kanade

performs one merge pass of n elements. The second level performs 2
passes, each merging 2/n elements. Thus the total time consumed in the
second level is also n . Depending on the control structure of the merge sort,
these two merges may or may not happen consecutively. For a recursive
merge sort, the two merges at level 2 will be separated by many deeper-level
merges. But, the total amount of merging action at level 2 will amount to a
total time of n . Continuing this argument, we get the diagram shown in Figure
2. Since the recursion continues to a depth of nlog , it is obvious45 by looking
at the diagram that the total amount of time taken by merge sort is)log(nnθ .

Now, it is obvious that the above “picture form” analysis holds not only for
merge sort in particular, but in general to the recurrence relation

Equation 1 n
n

tnt +�
�

�
�
�

�=
2

2)(

How may we generalize the above recurrence relation? It can be done in
many ways. When generalizing, always remember – the generalization should
be useful. A generalization of something is something that applies to a lot of
things. These “lot of things” must be things we would like to apply the
generalization to. Thus, before we generalize, we should know at least a few
of this lot of things. So, to avoid “shitaawaruun bhaataachii pariikshaa6”, we
will see a few more particular recurrences.

Well, one more, anyway –

On a particular rainy evening, n partially drunk people in a bar decide to
choose the arm wrestling champion among themselves. There is only one
table which may be used for arm wrestling. The (partially drunk) computer
engineer tells them that they should play in divide and conquer fashion – she
advises them to first pair off the n people and play one set of matches, and
continue from there, with only the winners (since none of the losers is the
champion) playing the next round. “Oh! Knockouts!” say the other partially
drunk attendees, and they decide to do exactly that…

Question: How much time will it take to decide a winner? Can you write a
recurrence relation for the time taken?

4 The number of levels is actually 1)(log +n since the levels are numbered in Figure 2

starting from 0. But 1)(log +n and nlog are asymptotically the same value.

5 Whenever we say “log”, the logarithm is to the base 2.

6 Judging the rice after eating a grain

The Master Method 5/24 © Udayan Kanade

Let us assume that it takes exactly two minutes to play one arm wrestling
match7. The recurrence relation for the total time taken to play the knockout
matches between n people is

Equation 2 n
n

tnt +�
�

�
�
�

�=
2

)(

The above equation says that the time taken to choose a champion among n
people is the time taken to play 2/n knockout matches (which is n), plus the
time taken to choose a champion among the remaining 2/n candidates.

Note that if n were an odd number, we should have actually used � �2/n in
the above equation. But in these pages, we will disregard the non-integer
effects, leaving them to the careful authors of your favorite textbooks.

Question: Draw the complexity “picture” for this recurrence, and find the total
time taken to find a champion.

Figure 3: The time taken for n people to decide a champion among themselves.

7 This could be any constant (as we will see later in the document) – and our asymptotic
analysis will not change. Furthermore, this need not even be a sharp constant. If we had
some bound like “each match takes at least one minute, and no match lasts more than three
minutes” that also would be good enough.

match time = n

n/2

n/4

1

Recursion
Level

0

1

 .
 .
 .

log n

log n

n

The Master Method 6/24 © Udayan Kanade

Figure 3 depicts the total time taken in the recursion of Equation 2. As before,
the actual time consumed is all in the n+ factor in the equation. That is as it
should be. The total time taken in playing all the matches should be
consumed in playing the matches!

Question: Give a good asymptotic approximation for the total amount of time
spent in the matches, i.e. the total blue area in Figure 3.

Looking at Figure 3, it is obvious that nn log is an upper bound on the total
blue area, because the whole figure is contained within the rectangle having
sides n and nlog . But, if you picture the nn log rectangle, it should be
obvious that we are over-counting. Turns out we are over-counting a lot:

From the figure, we see that the total time for deciding the champion is given
by

Equation 3
�� ��� ��
�

 termslog

42
)(

n

nn
nnt +++=

Simplifying, we get

Equation 4

�� ��� ��

�

 termslog

4

1

2

1
1)(

n

nnt �
�

�
�
�

� +++=

The terms in the brackets form a geometric progression with nlog terms. But,
we can overestimate it with an infinite term geometric series. Thus, we get

Equation 5 �
�

�
�
�

� ++++≤ �
8

1

4

1

2

1
1)(nnt

How much does the geometric series add up to? The above geometric series
)4/12/11(�+++ is probably the most common series encountered in the

analysis of algorithms, and we should just know that it adds up to 2 .

There are many ways to visualize this. Think of the following: the mythical
hero Achilles ran two miles. Well, he first ran one mile, which brought him half
the distance to his goal. Then he ran another half a mile, bringing him half the
remaining distance. Then he ran one fourth of a mile more, bringing him
another exactly half the distance of his goal of two miles. (Actually Achilles
just ran two miles, but the above description is definitely one valid description
(albeit maybe not thrilling) of his endeavor.) If you go on making such

The Master Method 7/24 © Udayan Kanade

“segments” of Achilles’ two mile run, you see that the segments form the
exact geometric series we are talking about. Thus, one way of looking at
Achilles’ run is)4/12/11(�+++ miles, and another way of looking at it is just
2 miles!8

The general formula for a geometric series is

Equation 6
r

rrr
−

=++++
1

1
1 32

�

This formula holds provided 1<r . On the other hand, if 1>r , we have a
divergent geometric series which has no finite limit. Even for 1=r the series
does not converge (which is rather obvious – an infinitely many 1’s are not
going to add up to a finite number.)

Now, we do not have to learn Equation 6 by heart, because it is very simple to
derive. If we take

�++++= 321 rrrS

Multiplying that by r leads us to

�+++= 32 rrrrS

Subtracting the second equation from the first gives us, marvelously,

1)1(

1

1
3322

3322

=−
−+−+−+−=−
−+−+−+−=−

Sr

rrrrrrrSS

rrrrrrrSS

�

�

This gives us the formula for adding up a geometric series, which is

Equation 6
r

rrr
−

=++++
1

1
1 32

�

8 This story was used by Zeno to argue that motion does not exist! We use it to show the
mundane (in comparison) fact that 24/12/11 =+++ � .

… ¼ mile ½ mile 1 mile

0
miles

1
miles

1.5
miles

2
miles

The Master Method 8/24 © Udayan Kanade

Coming back to Equation 5, we had got that the solution of the recurrence
nntnt +=)2/()(was bounded by

Equation 5 �
�

�
�
�

� ++++≤ �
8

1

4

1

2

1
1)(nnt

Now, substituting for the geometric series, we get that

Equation 7 nnt 2)(≤

Let us try to draw a picture of what we have done. Our goal was to estimate
the blue area in Figure 3. There are two ways of doing so, as shown below.

The pink area is the area added by the nn log upper bound. The green area is
the area added by the n2 bound. For sufficiently large n , the n2 bound gives
an almost exact value for)(nt . In our specific case, in fact, the n2 bound will
be off by exactly one match (two minutes), whereas the nn log bound will go
on becoming worse as n increases.

Thus, for the recurrence nntnt +=)2/()(, we have found the solution nnt 2)(≈ .
In fact, since the error is bounded by a constant, we can say)()(nnt θ∈ .

It is worth noting, however, that the nn log upper bound is actually better (or
sharper) than the n2 upper bound for the first few values of n . Here the effect
lasts only for 4≤n . But, in some other cases (as we will see in some time), the
rectangle bound will turn out to be better than the geometric series bound for
a large number of values. So, even though asymptotically our conclusion
would be in favor of the geometric series bound, one should be aware of the
other bounds which can also be applied. The usual surgeon-general’s warning
about asymptotics stays: use them with care! Hidden constants can be
dangerous to your health!

Question: Now take a look at the recurrence of Equation 1 and its associated
picture Figure 1, as well as Equation 2 and its associated picture Figure 3.
How would you like to generalize the above two equations to include a large
number of cases?

The Master Method 9/24 © Udayan Kanade

There are many generalizations that you can think of the two equations:

Equation 1 n
n

tnt +�
�

�
�
�

�=
2

2)(

Equation 2 n
n

tnt +�
�

�
�
�

�=
2

)(

One of the ways we can generalize is to change the “work” function (the
“conquer” pass, if the equation is representing a divide and conquer
algorithm) from the current “ n+ ” to other functions like 2n or nn log etc. This
is what we will eventually do, but not yet. There is a simpler generalization
that we must do firstb:

We are going to think about the following general recurrence relation

Equation 8 n
b

n
atnt +�

�

�
�
�

�=)(

The two recurrence relations in Equation 1 and Equation 2 are special cases
of this general recurrence relation. Thus, we have already solved the cases

)2,2(== ba and)2,1(== ba . The two cases we solved are fundamentally
different, in that we applied two different bound techniques (the rectangle and
the geometric series) to derive our answers. We should try to extend the two
cases to as many combinations of a ’s andb ’s as we can.

But, before we do that, let us try to understand our Equation 8 a little better.

Question: Can you look at Equation 8 as something arising out of a recursive
algorithm. What sort of recursive algorithm would give rise to Equation 8?

Think of a divide and conquer algorithm, which takes a problem of size n , and
breaks it into parts of size bn / . Because the size is bn / need not mean the
problem got divided into b parts. In fact, our divide and conquer algorithm
divides the problem of size n into a different parts, each of size bn / . Then it
takes linear time)(n to combine the outputs. The time taken by this algorithm
is the)(nt in Equation 8 above.c

Though we haven’t explicitly mentioned the terminating condition of the
recurrence relation, let us say the recursion terminates when the sub problem

The Master Method 10/24 © Udayan Kanade

size becomes1. Our algorithm can directly solve a problem of size1, and it
takes exactly unit (1) time to do so.

Question: Draw a rough “picture” for Equation 8. How much detail can you
show? What is the recursion depth?

Figure 4: Recursive complexity diagram for Equation 8 for a=3 and b=5

Question: Label the above diagram. How many levels of recursion? How
many recursive problems in successive levels of recursion? What is the size
of problem at each level of recursion? What is the size of the total blue area?

The size of the recursive problem becomes b/1 th every time you go down a
level of recursion. Recursion will stop when the size of problem is one.
Therefore it must be obvious that the final level of recursion will be at the
depth of nblog .

Explanation? Here it is:

The size of problem at the topmost level is n . At a level below that, the size of
the subproblem is bn / . Each of these bn / sized subproblems will now get
divided into 2/ bn sized subproblems of recursion depth 2. At recursion
depth k , the size of the subproblem being solved is kbn / . This recursion will

The Master Method 11/24 © Udayan Kanade

stop at the depth that the subproblem size it 1, that is, 1/ =kbn . When does
that happen? When kbn = . So what power of b will give you the value n ?
That’s simple: b when raised to the power of nblog , will give the value n .
That’s just the definition of logarithm to the baseb . Thus, recursion will stop at
the level numbered nblog .

Thus, the total number of levels of recursion is 1)(log +nb , including the 0th
level.

What is the number of subproblems at recursion depth k ? That is also simple
to answer. At depth zero, there is 1 subproblem. At depth 1, this problem gets
divided into a subproblems. At recursion depth 2 , each of these a
subproblems will get divided into a subproblems, giving a total of 2a
subproblems. Continuing in this fashion, we see that at recursion depth k , the
number of subproblems is ka .

Using this knowledge of number of recursion levels, the number of
subproblems at each recursion level, and the size of each subproblem, we
can label Figure 4 as shown below.

Figure 5: Recursive complexity diagram of Equation 8 with number of subproblems,
size of subproblem and the total time spent in each level of recursion

Thus, the total time spent, i.e. the total blue area, i.e. the solution to Equation
8 is

Equation 9
��� ���� ��

�

 termslog

2

2

)(

nb

b

na

b

an
nnt +++=

The above equation is of the same form as Equation 3.

Question: Can Equation 9 be analyzed the same way we analyzed Equation
3? Under what circumstances would the result be “similar”?

recursion
level

number of
subproblems

size of
subproblem

row
total

0

1 n n

1

a bn / ban /

2 2a 2/ bn 22 / bna
.
.

.

.
.
.

.

.
nblog nba log

1

/ log

=

nbbn

n

n

n

b

b

b

a

b

na

log

log

log

=

The Master Method 12/24 © Udayan Kanade

Equation 9 is a geometric series with first term n and subsequent terms
multiplied with a factor of bar /= each. We already proved that for a
convergent geometric series)1/(11 2 rrr −=+++ � . Thus, overestimating the

nblog terms to infinite terms, we get that

Equation 10

�
�

�
�
�

�

−
≤

�
�
�
�

�

�

�
�
�
�

�

�

−
≤

��
�

�
��
�

�
+++≤

ab

b
nnt

b

a
nnt

b

a

b

a
nnt

)(

1

1
)(

1)(
2

2

�

Equation 10 has given us an upper bound on)(nt , which, if we forget the
constants, is a linear ()(nO) upper bound. Looking at Equation 9 again, it is
obvious that nnt ≥)(. Thus)(nt is sandwiched between two scales of the
linear function n . Thus,)()(nnt θ∈ .

Of course, this will hold only if we have a convergent geometric series, i.e.
only if 1<r , i.e. only if 1/ <ba , i.e. only if ba < .

Thus we have seen that for ba < , the solution to

Equation 8 n
b

n
atnt +�

�

�
�
�

�=)(

is

Equation 11)()(nnt θ∈

This will hold for any a and b , i.e. any number of divisions and any size of
divisions, as long as ba < . The condition ba < means that all the
subproblems of a problem together are not as heavy as the problem itself.
The sum of the parts is lesser than the whole!

It is important, though, to remember that there is a hidden constant of
)/(abb − in the θ in Equation 11. This constant may become pretty huge if b

and a are close together. The problem that occurs when b is close to a is
depicted visually in Figure 6. The blue area is the actual running time of the
algorithm, which is a finite geometric series. This is extended to an infinite
geometric series by us, shown as the green area. The green area is negligible
on the figure on left. But for the figure on the right, where the diminishing rate
of the geometric series is not that fast, the green area can add up to quite a
lot. Though the)/(abb − constant is asymptotically negligible, it may be a big
overestimate for the first thousands, or millions of n . In such cases, the
“rectangle” bound which we will prove in some time could be practically much
more useful as an upper bound.

The Master Method 13/24 © Udayan Kanade

Figure 6: Area estimates given by infinite geometric series
extension, for ab 5.0= and ab 8.0= .

Ok. So that is the analysis for ba < . What happens if ba </ ?

Question: What will be the solution to Equation 8 for ba = ?

We already saw what happens when 2== ba . We get the solution
)log()(nnnt θ∈ . That is because we get the “rectangle” shape of Figure 1.

Every level of recursion is as heavy as every other.

A look at Figure 5 will tell us that the same will happen when == ba some
other number. All the levels of recursion will have the same amount of “blue”,
since �=== 22 // bnabann . What will change is the depth of recursion.
Earlier it was n2log . Now it is nblog .

Thus, nblog levels, each taking a time of n , gives us the solution

nnnt blog)(≈ .

(This value can also be used as an upper bound for ba < , and as we
discussed before, it might actually give better bounds than the “asymptotically
leaner”)(nθ .)

What can we say about the term nblog ? How does it relate to, say, the term

n2log ?

The Master Method 14/24 © Udayan Kanade

How does the term n4log relate to the term n2log ? Let us look at the very
basic definitions:

n2log is the number of times you have to divide n by 2 , to get to 1.

n4log is the number of times you have to divide n by 4 to get to 1.

Now, dividing by 4 is exactly dividing by 2 twice. So, the number of times you
will have to divide by 4 is exactly half the number of times you will have to
divide by 2 . Quite clearly, then,

nn 24 log
2

1
log =

Let us repeat the above for some other division factor b .

Now, how does the term nblog relate to the term n2log ? Let us look at the
very basic definitions:

n2log is the number of times you have to divide n by 2 to get to 1.

nblog is the number of times you have to divide n by b to get to 1.

(Here comes the tricky part!)

Dividing by b is exactly the same as dividing by 2 , repeatedly, b2log number
of times. That is because b

b

=×× ����� �

2log

222 . Thus, the number of times you have

to divide by b is exactly b2log/1 times the number of times you have to divide
by 2 . Quite clearly, now,

nn

n
b

n

bb

b

2

2
2

log)2(loglog

log
log

1
log

=

=

Thus, our earlier result now becomes nnnnnt bb 2log)2(loglog)(=≈ . We can
say)log()(nnnt θ∈ . And the next time someone says)log(nnθ , if you said
“yeah, but log to what base?” you’ll instantly know why they are laughing at
you. The logarithm base is irrelevant because of the θ !

Anyway, we have seen that for ba = , the solution to

Equation 8 n
b

n
atnt +�

�

�
�
�

�=)(

is

Equation 12)log()(nnnt θ∈

The Master Method 15/24 © Udayan Kanade

Question: So what about when ba > ?

The geometric series ���� ����� �� �
 termlog

22 //
nb

bnabann +++ is still valid.

The only problem is that now, it is not a convergent geometric series if you
extended it to infinite terms. The problem is depicted in Figure 7. The green
hatched portion (extended to infinity below) would be our overestimate!

Figure 7: The case where ba >

Question: So what do we do?

Look at the blue section in Figure 7 again. It is not a convergent geometric
series downwards, but it is a convergent geometric series upwards! Look at
the extension in

recursion
level

number of
subproblems

size of
subproblem

row
total

0 1 n n

1 a bn / ban /
2 2a 2/ bn 22 / bna
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
nblog nba log 1/ log =nbbn n

n

n
b

b

b

a
b

na log

log

log

=

The Master Method 16/24 © Udayan Kanade

Figure 8: Upward convergence!

Looked at this way, our geometric series starts with the bottommost level, with
the value of nba log , and moves upward with a multiplicative factor of ab / .
Thus, the geometric series is

�
�

�
�
�

�

−
≤

�
�
�
�

�

�

�
�
�
�

�

�

−
≤

��
�

�
��
�

�
+++≤

ba

a
ant

a

b
ant

a

b

a

b
ant

n

n

n

b

b

b

log

log

2

2
log

)(

1

1
)(

1)(�

As before, the lower bound of nba log is obvious, so that)(nt is bounded above

and below by scales of nba log , giving us that)()(log nbant θ∈ .

Now, we should be pretty happy with this shining analysis of ours, but are we?
We are not, you see. Because the question remains, what kind of a function is

nba log ? It’s not a logarithm of n . It’s not an exponential function of n either. It’s
an exponential of a logarithm. What does that mean? If the exponential and
the logarithm had used the same base, we would have said “log and antilog
cancel” and our answer would have been n . But here a and b are different
numbers.

Let us consider, as an example 4=a and 2=b . What will n2log4 be?

Let’s go back to the definition of the logarithm.

n2log is the number of times we have to multiply 2 with itself to get n .

recursion
level

number of
subproblems

size of
subproblem

row
total

0

1 n n

1

a bn / ban /

2 2a 2/ bn 22 / bna
.
.

.

.
.
.

.

.
nblog nba log 1/ log =nbbn n

n

n
b

b

b

a
b

na log

log

log

=

The Master Method 17/24 © Udayan Kanade

So, n2log4 is what happens when we find out the number of 2 s required to get
to n , and multiply those many 4 s instead.

(Now comes the usual tricky part!)

Multiplying a 4 is like multiplying a 2 twice.

Thus, multiplying as many 4 s as you should have multiplied 2 s to get to n
will get you to n twice. Thus, it will get you to 2n . Convince yourself of this: we
have seen that

2log24 nn =

Now, let us repeat the above procedure for any a and b .

Question: how much is nba log ? Answer:

Let us go back to the definition of the log:

nblog is the number of times we have to multiply b with itself to get to n .

So, nba log is what happens when we find out the number of b s required to get
to n , and multiply those many a s instead!

But, multiplying with an a is like multiplying with a b ablog times.

Thus, multiplying as many a s as you should have multiplied b s to get to n ,
will get you to n (multiplicatively) exactly ablog times. Thus, it will get you to

abn log .

This is great. We know what kind of function is nba log ! It is a polynomial in n :

an bb na loglog =

If you are not convinced by the (absolutely brilliant) argument above, you
should be, by the sequence of steps below:

an

a
b

n
b

bbbb

bb

bb

na

na

naan

loglog

loglog)(log)(log

))(log(log))(log(log

=

=

=

(The short but “sleigh of hand” sequence above is exactly the same as the
“proof” we gave before it. If you have some spare time, try to find the
correspondence. Some people like it this way, some people like it that way.)

What we have seen is, when ba > , the solution to

Equation 8 n
b

n
atnt +�

�

�
�
�

�=)(

The Master Method 18/24 © Udayan Kanade

is

Equation 13)()(log abnnt θ∈

(Now, you might be tempted to say that we will write)(log anθ , since we can
forget the logarithm base in the θ notation, but that’s not true. Because
though the base affects only up to a constant, in abn log , the constant is
important since it changes the power of n .)

Putting the results we have found above together, our theorem becomes:

The solution to

Equation 8 n
b

n
atnt +�

�

�
�
�

�=)(

is

Equation 14
	

	
�

�

>
=
<

∈
ba

ba

ba

n

nn

n

nt
ab when

when

when

)(

)log(

)(

)(
logθ

θ
θ

These three cases are depicted in Figure 9.

Figure 9: The three cases for Equation 8

Is this the master method? Well, not exactly. It is a little simpler than the
master method. (Maybe we should call it the “apprentice method”?) There is
one more generalization which will make it the master method. That
generalization is going to be using a function)(nf in place of the “ n+ ” linear
function. We will come to that in a moment.

For now, stare a little at Equation 8, Equation 14 and Figure 9. The three
cases are the “geometrically decreasing” ba < , the “rectangular” ba = and
the “geometrically increasing” ba > . In all the cases, the first (topmost) level
takes n time, whereas the bottommost level takes abn log time. In the first case,
the topmost level is the “indicative” one, giving a running time of)(nθ . In the
third case, the bottommost level is the “indicative” one, giving a running time
of)(log abnθ . In the middle case, all levels are equally important, giving a
running time of)log(nnθ .

ba < ba = ba >

The Master Method 19/24 © Udayan Kanade

Question: How do we extend this to any additive function)(nf ?

The equation we are trying to solve now, is

Equation 15)()(nf
b

n
atnt +�

�

�
�
�

�=

Let us take the case 4=a and 2=b .

Question: For 4=a and 2=b , what will happen if nnf =)(?

For nnf =)(, using the “apprentice method”, we see that we get the

“geometrically increasing” case. (The solution will be)()(24log2 nn θθ = .)

Question: What)(nf should we use to get from the “geometrically
increasing” case to the “rectangular” case? Should we use a function “thicker”
than n , or “thinner” than n ?

There is some chance that you may have confused yourself on the above
question. The correct answer is “thicker”. Though the “rectangular” case
seems thinner than “geometrically increasing”, we have to get to it using a
thicker)(nf . This is because when we use a thicker)(nf , it causes the level
zero)(nf to grow more than it causes the level one)/(bnf to grow, thus
making the hierarchy shape thinner – not really thinner, but relatively thinner.

The Master Method 20/24 © Udayan Kanade

If that is still too much mush, let us come to the correct answer. The answer is
2)(nnf = . Why? Here’s why:

We are solving

Equation 16 2

2
4)(n

n
tnt +�

�

�
�
�

�=

On the zeroth level, the amount of work done will be 2n .

On the first level, the amount of work done will be 4/)2/(22 nn = . But there

will be 4 such pieces, giving total work 22)2/(4 nn = .

On the second level, the work done will be 2222)2/(4 nn = .

.

.

.
On the last level, the work done will be 24loglog 2 nnn ab == .

Viola! The rectangular case. And the solution is (almost) nn log2 . We can call

this nnf log)(or we can call it nn ab loglog .

Now, in general, when does the rectangular case occur? When the first level
and last level have (at least asymptotically) the same amount of stuff. The first
level has)(nf . The last level has)1(log fn ab . (There are an bb na loglog =
divisions, each taking time equaling)1(f .))1(f is just some constant, we will

forget it. The rectangular case occurs when)()(log abnnf θ∈ for whatever a
and b there are in the recurrence.

Thus, we have seen9 that, when)()(log abnnf θ∈ , the solution to

Equation 15)()(nf
b

n
atnt +�

�

�
�
�

�=

is

Equation 17)log)(()(nnfnt θ∈

Let us try to get into the “geometrically decreasing” case.

Question: For 4=a and 2=b (as above), what choice of)(nf will get us
into the geometrically decreasing case?

9 With a lot of hand-waving!

The Master Method 21/24 © Udayan Kanade

To get from “geometrically increasing” to “rectangular”, we made)(nf thicker,

from the linear n to the quadratic 2n . To get into the “geometrically
decreasing” case, we have to make)(nf even thicker.

Take for example 3)(nnf = . The recurrence

Equation 18 3

2
4)(n

n
tnt +�

�

�
�
�

�=

will follow the “geometrically decreasing” pattern. The zeroth level will have 3n
stuff, followed by the first level which will have 2/)2/(4 33 nn = , followed by the

second level which will have 4/)2/(4 3322 nn = , and so forth. This can be

extended to the infinite series �++++ 8/4/2/ 3333 nnnn . This series has a
solution which is)(3nθ .

Now, when will the geometrically decreasing case actually arise? We might be
tempted to say “whenever 2)(nnf > ”, but that is obviously not the right

answer. (Counter example: 22n !) Then maybe we will say, “Aha! We know!
Whenever)()(2nnf Ω∈ , but not in)()(2nnf θ∈ .” Now that would be a very
good attempt, but, alas, still not true.

Consider the function nnnf log)(2= . Since this is thicker than 2n , we will get
a “decreasing” pattern, but, unfortunately, not a geometrically decreasing one.
It’s simple to see. When n changes to 2/n , 2n changes to 4/2n , but nlog

changes only to 1)(log −n . Thus the first level will have ��
�

�
��
�

�
−)1(log

4
4

2

n
n

 stuff.

Though this is lesser than the zeroth level’s nn log2 , the difference between

the two is just 2n , which is not a constant scale of nn log2 .

Thus, though the nlog factor caused a decreasing pattern, the decrease was
not good enough to give a geometric series. We cannot apply the
geometrically decreasing case.10 To apply the geometrically decreasing case,
the additive function)(nf has to be polynomially thicker than 2n . I.e.,)(nf

should at least be ε+2n , where ε is some positive constant. Thus, 3n will do,

10 We can still use the rectangular case and easily give an upper bound of

))(log()log)(()(22 nnOnnfOnt =∈ . That much should be obvious, and within the

purview of the master method. What may not be obvious is that 22)(log nn is also a lower

bound in case, and we have the (asymptotically) exact solution))(log()(22 nnnt θ∈ !

The Master Method 22/24 © Udayan Kanade

5.2n will do, and 0000001.2n will do11, but nn log2 will not do, and neither will
32)(lognn .

When we have ε+= 2)(nnf , we get the series

ε

ε

εε
ε

εε
ε

+

+

++
+

++
+

−
=

��
�

�
��
�

�
+++=

+�
�

�
�
�

�+�
�

�
�
�

�+=

+�
�

�
�
�

�+�
�

�
�
�

�+

2

2

)2(2

2

2
2

2

2
2

2
2

2
2

1

1

1

)(

b

a
n

b

a

b

a
n

b

n
a

b

n
an

b

n
fa

b

n
afnf

�

�

�

The last step holds because 4=a and 2=b , thus giving a rate of less than
one.

Whenever ε+= 2)(nnf , we will get the geometrically decreasing pattern, and
the solution will be))(()(nfnt θ∈ .

In general, for any a and b , whenever)()(log abnnf +Ω∈ ε , the solution to

Equation 15)()(nf
b

n
atnt +�

�

�
�
�

�=

should be

Equation 19))(()(nfnt θ∈

Unfortunately, it isn’t. There are some weird functions which are in the above
mentioned Ω , but will not give the above result12,13.

11 though for 0000001.2n , the asymptotics will be useful after a huge n , and it would be
practically better to use the rectangle bound.

12 (If you have a polynomial)(nf , these weird cases will never arise. But they could easily

be your everyday non-polynomial function.)

13 This happens because the Ω just specifies a lower bound on)(nf . These particular

)(nf s generally “cheat” by growing large fast, and then “holding still” for some time, thus

giving a “false impression” about themselves to the θ in the solution. (At least that’s how they
would behave if they appeared as characters on your favorite soap…)

The Master Method 23/24 © Udayan Kanade

We need a stronger condition. A stronger condition that will definitely work is
easy to derive. You just say that the rate of growth r , should be smaller than
one.

Now, the first level has)(nf stuff. The second level has)/(bnaf stuff. We
want that there should exist a constant 1<r such that the second level has at
most r times the stuff in the first level. I.e., we want an 1<r such that

)(nrf
b

n
af ≤�

�

�
�
�

�

If such a constant r was found such that the above equation will hold (for that
same)r for every n , then every level will have at most r times its previous
level, thus giving a geometrically decreasing pattern.

Seems too harsh? OK, how about we exempt the first few n s from having to
abide by these rules? (Hey, it’s asymptotics, the first few n s don’t matter.
Right?d)

Finally what we get is, if)()/(nrfbnaf ≤ for some constant 1<r for all
sufficiently large n , the solution to

Equation 15)()(nf
b

n
atnt +�

�

�
�
�

�=

is

Equation 19))(()(nfnt θ∈

The above stronger condition is called the “smoothness” criterion.

The smoothness criterion is not required for the geometrically increasing
case. Because the O is considerably stricter with)(nf than Ω is.

Thus, the geometrically increasing case will occur whenever
)()(log abnOnf +−∈ ε . In this case, the solution will be asymptotically equivalent

to the amount of stuff in the last level. The amount of stuff in the last level is
)1(log fn ab .

Thus, if)()(log abnOnf +−∈ ε for some constant 0>ε , the solution to

Equation 15)()(nf
b

n
atnt +�

�

�
�
�

�=

is

Equation 20)()(log abnnt θ∈

The Master Method 24/24 © Udayan Kanade

The above completes the three cases of the master method. If we recollect
what we learned in Equation 17, Equation 19 and Equation 20, we get what is
known as the “master theorem”:

The solution to

Equation 15)()(nf
b

n
atnt +�

�

�
�
�

�=

is

Equation 21

	

	
�

�

><
∈

>∈

∈

+−

0 somefor)()/(when

)()(when

0 somefor)()(when

))((

)log)((

)(

)(log

loglog

rnrfbnaf

nnf

nOnf

nf

nnf

n

nt a

aa

b

bb

θ
ε

θ
θ
θ ε

This is the master theorem, and solving recurrences using this is the master
method.

This document was supposed to teach the fundamental workings of the
master method, hopefully rendering it more easy to grasp and use than
otherwise. Your favorite algorithmics textbook picks up where this document
leaves. There they would prove everything correctly, take into account all the
borderline cases, the effects added by integer-rounding and be prim and
proper about everything. That is generally a good thing. It would be beneficial,
at this point to read the book.

a The inductive step goes

nan

nannan

nnan

nnna

nntnt

log

log

)1)((log

)2/log()2/(2

)2/(2)(

≤
+−=

+−=
+=

+=

which is true for 1=a .

b You might have even thought that we will have more than one recursion functions, like say,
in the recurrence nntntnt ++=)4/()5/(2)(. Though the Master Method does not directly
tackle such equations, it does provide upper and lower bounds, and provides us insight into
how the recurrence may actually work. (In this recurrence, for example, can you see that the
answer is going to be)()(nnt θ∈ ?)

c The recursive algorithm is a nice “realization” for the recurrence relation, which is why we
are using it. The analysis we develop here will stand for the recurrence relation itself, whether
it arose from a recursive algorithm or not.

d Not exactly right, actually.

