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The Master Method 

While analyzing algorithms, we come across various types of recurrences. For 
example, here is a particular recurrence. 

Equation 1 n
n
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Question: In the analysis of what algorithms does this equation occur? Think 
of as many places as you can where this equation will be used. 

1 

One of the places the above equation occurs is in the analysis of the merge 
sort. )(nt  is the time taken by merge sort to sort n  elements. Equation 1 says 
that the time taken to merge sort n  elements is the time taken to merge sort 
two sets of 2/n  elements plus the time taken to merge the two sorted lists 
(which is n ). 

Another place the above equation occurs is in the best case analysis of quick 
sort. In the best case, the quick sort pivot lands exactly in the center, dividing 
the set to be sorted into two exactly equal sorts. For the quick sort, the 
equation says that in the best case, the quick sort on n  elements does a 
separation pass (taking time n ) followed by two quick sorts on 2/n  elements. 

The same equation will occur in many more algorithms. Equation 1 is in fact 
one of the most commonly occurring recurrences in algorithm analysis. 

Solving recurrences is a major part of analyzing algorithms. Recurrences 
generally occur directly due to recursive algorithms. Recurrences can occur 
due to other reasons also. (In fact, even if we were using the iterative merge 
sort, we could analyze it using the same recurrence relation.) 

Question: What is the solution of the above recurrence? 

 

                                            

1 The blue horizontal fence means you should stop here and think before continuing. 
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Those who remember merge sort will quickly realize that the solution to the 
above recurrence is )log()( nnnt θ∈ . Once we know that this is the solution, we 
can easily prove this using constructive inductiona. 

The question is how to come up with )log()( nnnt θ∈  in the first place? Is there 
a general method by which we can just look at a recurrence and say what the 
complexity is going to be? This document is about such a general method. It’s 
called the Master Method. 

Before we go on to learn about the Master Method, let us try to analyze merge 
sort further for a bit. 

Question: Why does merge sort take )log( nnθ  time? Can we visualize the 
complexity of merge sort? 

2 

Look again at the recurrence relation 

Equation 1 n
n

tnt +�
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The merge sort “sorting action” all happens in the “merge pass”, in the 
“conquer” of the divide and conquer methodology. That is, it is the n+  factor 
in the above equation at various levels of recursion that together causes the 
merge sort time complexity. If we were to draw all these n+ s at all the levels 
of recursion, we will get a “picture” of the complexity of merge sort. 

Question: Try to draw this picture of the complexity of merge sort. 

 

                                            

2 This document would be most beneficial if you tried to answer the blue fence questions 
yourself. 
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Figure 1: “ Picture”  of the complexity of merge sort 

Question: Label this figure in your mind. What does every element mean? 
Can you argue using this figure that the complexity of merge sort is )log( nnθ ? 

3 

 

Figure 2: The complexity of merge sort is )log( nnθθθθ  

Figure 2 is Figure 1 redrawn to show how the complexity of merge sort is 
distributed among the recursion levels of the merge sort. The top level 
                                            

3 It is a good idea to hold a paper below the blue fence, so that you do not strain yourself 
trying hard not to look below it! 
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performs one merge pass of n  elements. The second level performs 2 
passes, each merging 2/n  elements. Thus the total time consumed in the 
second level is also n . Depending on the control structure of the merge sort, 
these two merges may or may not happen consecutively. For a recursive 
merge sort, the two merges at level 2 will be separated by many deeper-level 
merges. But, the total amount of merging action at level 2 will amount to a 
total time of n . Continuing this argument, we get the diagram shown in Figure 
2. Since the recursion continues to a depth of nlog , it is obvious45 by looking 
at the diagram that the total amount of time taken by merge sort is )log( nnθ . 

Now, it is obvious that the above “picture form” analysis holds not only for 
merge sort in particular, but in general to the recurrence relation 

Equation 1 n
n

tnt +�
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How may we generalize the above recurrence relation? It can be done in 
many ways. When generalizing, always remember – the generalization should 
be useful. A generalization of something is something that applies to a lot of 
things. These “lot of things” must be things we would like to apply the 
generalization to. Thus, before we generalize, we should know at least a few 
of this lot of things. So, to avoid “shitaawaruun bhaataachii pariikshaa6”, we 
will see a few more particular recurrences. 

Well, one more, anyway – 

On a particular rainy evening, n  partially drunk people in a bar decide to 
choose the arm wrestling champion among themselves. There is only one 
table which may be used for arm wrestling. The (partially drunk) computer 
engineer tells them that they should play in divide and conquer fashion – she 
advises them to first pair off the n  people and play one set of matches, and 
continue from there, with only the winners (since none of the losers is the 
champion) playing the next round. “Oh! Knockouts!” say the other partially 
drunk attendees, and they decide to do exactly that… 

Question: How much time will it take to decide a winner? Can you write a 
recurrence relation for the time taken? 

 

                                            

4 The number of levels is actually 1)(log +n  since the levels are numbered in Figure 2 

starting from 0. But 1)(log +n  and nlog  are asymptotically the same value. 

5 Whenever we say “log”, the logarithm is to the base 2. 

6 Judging the rice after eating a grain 
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Let us assume that it takes exactly two minutes to play one arm wrestling 
match7. The recurrence relation for the total time taken to play the knockout 
matches between n  people is 

Equation 2 n
n

tnt +�
�

�
�
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The above equation says that the time taken to choose a champion among n  
people is the time taken to play 2/n  knockout matches (which is n ), plus the 
time taken to choose a champion among the remaining 2/n  candidates. 

Note that if n  were an odd number, we should have actually used � �2/n  in 
the above equation. But in these pages, we will disregard the non-integer 
effects, leaving them to the careful authors of your favorite textbooks. 

Question: Draw the complexity “picture” for this recurrence, and find the total 
time taken to find a champion. 

 

 

Figure 3: The time taken for n  people to decide a champion among themselves. 

                                            

7 This could be any constant (as we will see later in the document) – and our asymptotic 
analysis will not change. Furthermore, this need not even be a sharp constant. If we had 
some bound like “each match takes at least one minute, and no match lasts more than three 
minutes” that also would be good enough. 
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Figure 3 depicts the total time taken in the recursion of Equation 2. As before, 
the actual time consumed is all in the n+  factor in the equation. That is as it 
should be. The total time taken in playing all the matches should be 
consumed in playing the matches! 

Question: Give a good asymptotic approximation for the total amount of time 
spent in the matches, i.e. the total blue area in Figure 3. 

 

Looking at Figure 3, it is obvious that nn log  is an upper bound on the total 
blue area, because the whole figure is contained within the rectangle having 
sides n  and nlog . But, if you picture the nn log  rectangle, it should be 
obvious that we are over-counting. Turns out we are over-counting a lot: 

From the figure, we see that the total time for deciding the champion is given 
by 

Equation 3  
�� ��� ��
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nnt +++=  

Simplifying, we get 

Equation 4 
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The terms in the brackets form a geometric progression with nlog  terms. But, 
we can overestimate it with an infinite term geometric series. Thus, we get 

Equation 5 �
�

�
�
�

� ++++≤ �
8
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1)( nnt  

How much does the geometric series add up to? The above geometric series 
)4/12/11( �+++  is probably the most common series encountered in the 

analysis of algorithms, and we should just know that it adds up to 2 . 

There are many ways to visualize this. Think of the following: the mythical 
hero Achilles ran two miles. Well, he first ran one mile, which brought him half 
the distance to his goal. Then he ran another half a mile, bringing him half the 
remaining distance. Then he ran one fourth of a mile more, bringing him 
another exactly half the distance of his goal of two miles. (Actually Achilles 
just ran two miles, but the above description is definitely one valid description 
(albeit maybe not thrilling) of his endeavor.) If you go on making such 
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“segments” of Achilles’ two mile run, you see that the segments form the 
exact geometric series we are talking about. Thus, one way of looking at 
Achilles’ run is )4/12/11( �+++  miles, and another way of looking at it is just 
2  miles!8 

 

The general formula for a geometric series is 

Equation 6 
r

rrr
−
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1

1
1 32

�  

This formula holds provided 1<r . On the other hand, if 1>r , we have a 
divergent geometric series which has no finite limit. Even for 1=r  the series 
does not converge (which is rather obvious – an infinitely many 1’s are not 
going to add up to a finite number.) 

Now, we do not have to learn Equation 6 by heart, because it is very simple to 
derive. If we take 

�++++= 321 rrrS  

Multiplying that by r  leads us to 

�+++= 32 rrrrS  

Subtracting the second equation from the first gives us, marvelously, 

1)1(

1

1
3322

3322

=−
−+−+−+−=−
−+−+−+−=−
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rrrrrrrSS

�

�

 

This gives us the formula for adding up a geometric series, which is 

Equation 6 
r

rrr
−

=++++
1

1
1 32

�  

                                            

8 This story was used by Zeno to argue that motion does not exist! We use it to show the 
mundane (in comparison) fact that 24/12/11 =+++ � . 
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Coming back to Equation 5, we had got that the solution of the recurrence 
nntnt += )2/()(  was bounded by 

Equation 5 �
�

�
�
�

� ++++≤ �
8

1

4

1

2

1
1)( nnt  

Now, substituting for the geometric series, we get that 

Equation 7 nnt 2)( ≤  

Let us try to draw a picture of what we have done. Our goal was to estimate 
the blue area in Figure 3. There are two ways of doing so, as shown below. 

 

The pink area is the area added by the nn log  upper bound. The green area is 
the area added by the n2  bound. For sufficiently large n , the n2  bound gives 
an almost exact value for )(nt . In our specific case, in fact, the n2  bound will 
be off by exactly one match (two minutes), whereas the nn log  bound will go 
on becoming worse as n  increases. 

Thus, for the recurrence nntnt += )2/()( , we have found the solution nnt 2)( ≈ . 
In fact, since the error is bounded by a constant, we can say )()( nnt θ∈ . 

It is worth noting, however, that the nn log  upper bound is actually better (or 
sharper) than the n2  upper bound for the first few values of n . Here the effect 
lasts only for 4≤n . But, in some other cases (as we will see in some time), the 
rectangle bound will turn out to be better than the geometric series bound for 
a large number of values. So, even though asymptotically our conclusion 
would be in favor of the geometric series bound, one should be aware of the 
other bounds which can also be applied. The usual surgeon-general’s warning 
about asymptotics stays: use them with care! Hidden constants can be 
dangerous to your health! 

Question: Now take a look at the recurrence of Equation 1 and its associated 
picture Figure 1, as well as Equation 2 and its associated picture Figure 3. 
How would you like to generalize the above two equations to include a large 
number of cases? 
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There are many generalizations that you can think of the two equations: 

Equation 1 n
n

tnt +�
�

�
�
�
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Equation 2 n
n

tnt +�
�
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One of the ways we can generalize is to change the “work” function (the 
“conquer” pass, if the equation is representing a divide and conquer 
algorithm) from the current “ n+ ” to other functions like 2n  or nn log  etc. This 
is what we will eventually do, but not yet. There is a simpler generalization 
that we must do firstb: 

We are going to think about the following general recurrence relation 

Equation 8 n
b

n
atnt +�

�

�
�
�

�=)(  

The two recurrence relations in Equation 1 and Equation 2 are special cases 
of this general recurrence relation. Thus, we have already solved the cases 

)2,2( == ba  and )2,1( == ba . The two cases we solved are fundamentally 
different, in that we applied two different bound techniques (the rectangle and 
the geometric series) to derive our answers. We should try to extend the two 
cases to as many combinations of a ’s andb ’s as we can. 

But, before we do that, let us try to understand our Equation 8 a little better. 

Question: Can you look at Equation 8 as something arising out of a recursive 
algorithm. What sort of recursive algorithm would give rise to Equation 8? 

 

Think of a divide and conquer algorithm, which takes a problem of size n , and 
breaks it into parts of size bn / . Because the size is bn /  need not mean the 
problem got divided into b  parts. In fact, our divide and conquer algorithm 
divides the problem of size n  into a  different parts, each of size bn / . Then it 
takes linear time )(n  to combine the outputs. The time taken by this algorithm 
is the )(nt  in Equation 8 above.c 

Though we haven’t explicitly mentioned the terminating condition of the 
recurrence relation, let us say the recursion terminates when the sub problem 
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size becomes1. Our algorithm can directly solve a problem of size1, and it 
takes exactly unit (1) time to do so. 

Question: Draw a rough “picture” for Equation 8. How much detail can you 
show? What is the recursion depth? 

 

 

Figure 4: Recursive complexity diagram for Equation 8 for a=3 and b=5 

 

Question: Label the above diagram. How many levels of recursion? How 
many recursive problems in successive levels of recursion? What is the size 
of problem at each level of recursion? What is the size of the total blue area? 

 

The size of the recursive problem becomes b/1 th every time you go down a 
level of recursion. Recursion will stop when the size of problem is one. 
Therefore it must be obvious that the final level of recursion will be at the 
depth of nblog . 

Explanation? Here it is: 

The size of problem at the topmost level is n . At a level below that, the size of 
the subproblem is bn / . Each of these bn /  sized subproblems will now get 
divided into 2/ bn  sized subproblems of recursion depth 2. At recursion 
depth k , the size of the subproblem being solved is kbn / . This recursion will 
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stop at the depth that the subproblem size it 1, that is, 1/ =kbn . When does 
that happen? When kbn = . So what power of b  will give you the value n ? 
That’s simple: b  when raised to the power of nblog , will give the value n . 
That’s just the definition of logarithm to the baseb . Thus, recursion will stop at 
the level numbered nblog . 

Thus, the total number of levels of recursion is 1)(log +nb , including the 0th 
level. 

What is the number of subproblems at recursion depth k ? That is also simple 
to answer. At depth zero, there is 1 subproblem. At depth 1, this problem gets 
divided into a  subproblems. At recursion depth 2 , each of these a  
subproblems will get divided into a  subproblems, giving a total of 2a  
subproblems. Continuing in this fashion, we see that at recursion depth k , the 
number of subproblems is ka . 

Using this knowledge of number of recursion levels, the number of 
subproblems at each recursion level, and the size of each subproblem, we 
can label Figure 4 as shown below. 

 

Figure 5: Recursive complexity diagram of Equation 8 with number of subproblems, 
size of subproblem and the total time spent in each level of recursion 

Thus, the total time spent, i.e. the total blue area, i.e. the solution to Equation 
8 is 

Equation 9 
��� ���� ��
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 termslog
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b

na

b

an
nnt +++=  

The above equation is of the same form as Equation 3. 

Question: Can Equation 9 be analyzed the same way we analyzed Equation 
3? Under what circumstances would the result be “similar”? 
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Equation 9 is a geometric series with first term n  and subsequent terms 
multiplied with a factor of bar /=  each. We already proved that for a 
convergent geometric series )1/(11 2 rrr −=+++ � . Thus, overestimating the 

nblog  terms to infinite terms, we get that 

Equation 10 
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Equation 10 has given us an upper bound on )(nt , which, if we forget the 
constants, is a linear ( )(nO ) upper bound. Looking at Equation 9 again, it is 
obvious that nnt ≥)( . Thus )(nt  is sandwiched between two scales of the 
linear function n . Thus, )()( nnt θ∈ . 

Of course, this will hold only if we have a convergent geometric series, i.e. 
only if 1<r , i.e. only if 1/ <ba , i.e. only if ba < . 

Thus we have seen that for ba < , the solution to 

Equation 8 n
b

n
atnt +�

�

�
�
�

�=)(  

is 

Equation 11 )()( nnt θ∈  

This will hold for any a  and b , i.e. any number of divisions and any size of 
divisions, as long as ba < . The condition ba <  means that all the 
subproblems of a problem together are not as heavy as the problem itself. 
The sum of the parts is lesser than the whole! 

It is important, though, to remember that there is a hidden constant of 
)/( abb −  in the θ  in Equation 11. This constant may become pretty huge if b  

and a  are close together. The problem that occurs when b  is close to a  is 
depicted visually in Figure 6. The blue area is the actual running time of the 
algorithm, which is a finite geometric series. This is extended to an infinite 
geometric series by us, shown as the green area. The green area is negligible 
on the figure on left. But for the figure on the right, where the diminishing rate 
of the geometric series is not that fast, the green area can add up to quite a 
lot. Though the )/( abb −  constant is asymptotically negligible, it may be a big 
overestimate for the first thousands, or millions of n . In such cases, the 
“rectangle” bound which we will prove in some time could be practically much 
more useful as an upper bound. 
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Figure 6: Area estimates given by infinite geometric series  
extension, for ab 5.0=  and ab 8.0= . 

Ok. So that is the analysis for ba < . What happens if ba </ ? 

Question: What will be the solution to Equation 8 for ba = ? 

 

We already saw what happens when 2== ba . We get the solution 
)log()( nnnt θ∈ . That is because we get the “rectangle” shape of Figure 1. 

Every level of recursion is as heavy as every other. 

A look at Figure 5 will tell us that the same will happen when == ba some 
other number. All the levels of recursion will have the same amount of “blue”, 
since �=== 22 // bnabann . What will change is the depth of recursion. 
Earlier it was n2log . Now it is nblog . 

Thus, nblog  levels, each taking a time of n , gives us the solution 

nnnt blog)( ≈ . 

(This value can also be used as an upper bound for ba < , and as we 
discussed before, it might actually give better bounds than the “asymptotically 
leaner” )(nθ .) 

What can we say about the term nblog ? How does it relate to, say, the term 

n2log ? 
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How does the term n4log  relate to the term n2log ? Let us look at the very 
basic definitions: 

n2log  is the number of times you have to divide n  by 2 , to get to 1. 

n4log  is the number of times you have to divide n  by 4  to get to 1. 

Now, dividing by 4  is exactly dividing by 2  twice. So, the number of times you 
will have to divide by 4  is exactly half the number of times you will have to 
divide by 2 . Quite clearly, then, 

nn 24 log
2

1
log =  

Let us repeat the above for some other division factor b . 

Now, how does the term nblog  relate to the term n2log ? Let us look at the 
very basic definitions: 

n2log  is the number of times you have to divide n  by 2 to get to 1. 

nblog  is the number of times you have to divide n  by b to get to 1. 

(Here comes the tricky part!) 

Dividing by b  is exactly the same as dividing by 2 , repeatedly, b2log  number 
of times. That is because b

b

=×× ����� �

2log

222 . Thus, the number of times you have 

to divide by b  is exactly b2log/1  times the number of times you have to divide 
by 2 . Quite clearly, now, 

nn

n
b

n

bb

b

2

2
2

log)2(loglog

log
log

1
log

=

=
 

Thus, our earlier result now becomes nnnnnt bb 2log)2(loglog)( =≈ . We can 
say )log()( nnnt θ∈ . And the next time someone says )log( nnθ , if you said 
“yeah, but log to what base?” you’ll instantly know why they are laughing at 
you. The logarithm base is irrelevant because of the θ ! 

Anyway, we have seen that for ba = , the solution to 

Equation 8 n
b

n
atnt +�

�

�
�
�

�=)(  

is 

Equation 12 )log()( nnnt θ∈  
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Question: So what about when ba > ? 

 

The geometric series ���� ����� �� �
 termlog

22 //
nb

bnabann +++  is still valid. 

The only problem is that now, it is not a convergent geometric series if you 
extended it to infinite terms. The problem is depicted in Figure 7. The green 
hatched portion (extended to infinity below) would be our overestimate! 

 

Figure 7: The case where ba >  

Question: So what do we do? 

 

Look at the blue section in Figure 7 again. It is not a convergent geometric 
series downwards, but it is a convergent geometric series upwards! Look at 
the extension in 
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Figure 8: Upward convergence! 

Looked at this way, our geometric series starts with the bottommost level, with 
the value of nba log , and moves upward with a multiplicative factor of ab / . 
Thus, the geometric series is 
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As before, the lower bound of nba log  is obvious, so that )(nt is bounded above 

and below by scales of nba log , giving us that )()( log nbant θ∈ . 

Now, we should be pretty happy with this shining analysis of ours, but are we? 
We are not, you see. Because the question remains, what kind of a function is 

nba log ? It’s not a logarithm of n . It’s not an exponential function of n  either. It’s 
an exponential of a logarithm. What does that mean? If the exponential and 
the logarithm had used the same base, we would have said “log and antilog 
cancel” and our answer would have been n . But here a  and b  are different 
numbers. 

Let us consider, as an example 4=a  and 2=b . What will n2log4  be? 

Let’s go back to the definition of the logarithm. 

n2log  is the number of times we have to multiply 2  with itself to get n . 
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So, n2log4  is what happens when we find out the number of 2 s required to get 
to n , and multiply those many 4 s instead. 

(Now comes the usual tricky part!) 

Multiplying a 4  is like multiplying a 2  twice. 

Thus, multiplying as many 4 s as you should have multiplied 2 s to get to n  
will get you to n  twice. Thus, it will get you to 2n . Convince yourself of this: we 
have seen that 

2log24 nn =  

Now, let us repeat the above procedure for any a  and b . 

Question: how much is nba log ? Answer: 

Let us go back to the definition of the log: 

nblog  is the number of times we have to multiply b  with itself to get to n . 

So, nba log  is what happens when we find out the number of b s required to get 
to n , and multiply those many a s instead! 

But, multiplying with an a  is like multiplying with a b  ablog  times. 

Thus, multiplying as many a s as you should have multiplied b s to get to n , 
will get you to n  (multiplicatively) exactly ablog  times. Thus, it will get you to 

abn log . 

This is great. We know what kind of function is nba log ! It is a polynomial in n : 

an bb na loglog =  

If you are not convinced by the (absolutely brilliant) argument above, you 
should be, by the sequence of steps below: 

an

a
b

n
b

bbbb

bb

bb

na

na

naan

loglog

loglog )(log)(log

))(log(log))(log(log

=

=

=

 

(The short but “sleigh of hand” sequence above is exactly the same as the 
“proof” we gave before it. If you have some spare time, try to find the 
correspondence. Some people like it this way, some people like it that way.) 

What we have seen is, when ba > , the solution to 

Equation 8 n
b

n
atnt +�

�

�
�
�

�=)(  
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is 

Equation 13 )()( log abnnt θ∈  

(Now, you might be tempted to say that we will write )( log anθ , since we can 
forget the logarithm base in the θ  notation, but that’s not true. Because 
though the base affects only up to a constant, in abn log , the constant is 
important since it changes the power of n .) 

Putting the results we have found above together, our theorem becomes: 

The solution to 

Equation 8 n
b

n
atnt +�

�

�
�
�

�=)(  

is 

Equation 14 
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These three cases are depicted in Figure 9. 

 

Figure 9: The three cases for Equation 8 

Is this the master method? Well, not exactly. It is a little simpler than the 
master method. (Maybe we should call it the “apprentice method”?) There is 
one more generalization which will make it the master method. That 
generalization is going to be using a function )(nf  in place of the “ n+ ” linear 
function. We will come to that in a moment. 

For now, stare a little at Equation 8, Equation 14 and Figure 9. The three 
cases are the “geometrically decreasing” ba < , the “rectangular” ba =  and 
the “geometrically increasing” ba > . In all the cases, the first (topmost) level 
takes n  time, whereas the bottommost level takes abn log  time. In the first case, 
the topmost level is the “indicative” one, giving a running time of )(nθ . In the 
third case, the bottommost level is the “indicative” one, giving a running time 
of )( log abnθ . In the middle case, all levels are equally important, giving a 
running time of )log( nnθ . 

ba <  ba =  ba >  
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Question: How do we extend this to any additive function )(nf ? 

 

The equation we are trying to solve now, is 

Equation 15 )()( nf
b

n
atnt +�

�

�
�
�

�=  

Let us take the case 4=a  and 2=b . 

Question: For 4=a  and 2=b , what will happen if nnf =)( ? 

 

For nnf =)( , using the “apprentice method”, we see that we get the 

“geometrically increasing” case. (The solution will be )()( 24log2 nn θθ = .) 

Question: What )(nf  should we use to get from the “geometrically 
increasing” case to the “rectangular” case? Should we use a function “thicker” 
than n , or “thinner” than n ? 

 

There is some chance that you may have confused yourself on the above 
question. The correct answer is “thicker”. Though the “rectangular” case 
seems thinner than “geometrically increasing”, we have to get to it using a 
thicker )(nf . This is because when we use a thicker )(nf , it causes the level 
zero )(nf  to grow more than it causes the level one )/( bnf  to grow, thus 
making the hierarchy shape thinner – not really thinner, but relatively thinner. 
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If that is still too much mush, let us come to the correct answer. The answer is 
2)( nnf = . Why? Here’s why: 

We are solving 

Equation 16 2

2
4)( n

n
tnt +�

�

�
�
�

�=  

On the zeroth level, the amount of work done will be 2n . 

On the first level, the amount of work done will be 4/)2/( 22 nn = . But there 

will be 4 such pieces, giving total work 22)2/(4 nn = . 

On the second level, the work done will be 2222 )2/(4 nn = . 

. 

. 

. 
On the last level, the work done will be 24loglog 2 nnn ab == . 

Viola! The rectangular case. And the solution is (almost) nn log2 . We can call 

this nnf log)(  or we can call it nn ab loglog . 

Now, in general, when does the rectangular case occur? When the first level 
and last level have (at least asymptotically) the same amount of stuff. The first 
level has )(nf . The last level has )1(log fn ab . (There are an bb na loglog =  
divisions, each taking time equaling )1(f .) )1(f  is just some constant, we will 

forget it. The rectangular case occurs when )()( log abnnf θ∈  for whatever a  
and b  there are in the recurrence. 

Thus, we have seen9 that, when )()( log abnnf θ∈ , the solution to 

Equation 15 )()( nf
b

n
atnt +�

�

�
�
�

�=  

is 

Equation 17 )log)(()( nnfnt θ∈  

Let us try to get into the “geometrically decreasing” case. 

Question: For 4=a  and 2=b  (as above), what choice of )(nf  will get us 
into the geometrically decreasing case? 

 

                                            

9 With a lot of hand-waving! 
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To get from “geometrically increasing” to “rectangular”, we made )(nf  thicker, 

from the linear n  to the quadratic 2n . To get into the “geometrically 
decreasing” case, we have to make )(nf  even thicker. 

Take for example 3)( nnf = . The recurrence 

Equation 18 3

2
4)( n

n
tnt +�

�

�
�
�

�=  

will follow the “geometrically decreasing” pattern. The zeroth level will have 3n  
stuff, followed by the first level which will have 2/)2/(4 33 nn = , followed by the 

second level which will have 4/)2/(4 3322 nn = , and so forth. This can be 

extended to the infinite series �++++ 8/4/2/ 3333 nnnn . This series has a 
solution which is )( 3nθ . 

Now, when will the geometrically decreasing case actually arise? We might be 
tempted to say “whenever 2)( nnf > ”, but that is obviously not the right 

answer. (Counter example: 22n !) Then maybe we will say, “Aha! We know! 
Whenever )()( 2nnf Ω∈ , but not in )()( 2nnf θ∈ .” Now that would be a very 
good attempt, but, alas, still not true. 

Consider the function nnnf log)( 2= . Since this is thicker than 2n , we will get 
a “decreasing” pattern, but, unfortunately, not a geometrically decreasing one. 
It’s simple to see. When n  changes to 2/n , 2n  changes to 4/2n , but nlog  

changes only to 1)(log −n . Thus the first level will have ��
�

�
��
�

�
− )1(log

4
4

2

n
n

 stuff. 

Though this is lesser than the zeroth level’s nn log2 , the difference between 

the two is just 2n , which is not a constant scale of nn log2 . 

Thus, though the nlog  factor caused a decreasing pattern, the decrease was 
not good enough to give a geometric series. We cannot apply the 
geometrically decreasing case.10 To apply the geometrically decreasing case, 
the additive function )(nf  has to be polynomially thicker than 2n . I.e., )(nf  

should at least be ε+2n , where ε  is some positive constant. Thus, 3n  will do, 

                                            

10 We can still use the rectangular case and easily give an upper bound of 

))(log()log)(()( 22 nnOnnfOnt =∈ . That much should be obvious, and within the 

purview of the master method. What may not be obvious is that 22 )(log nn  is also a lower 

bound in case, and we have the (asymptotically) exact solution ))(log()( 22 nnnt θ∈ ! 
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5.2n  will do, and 0000001.2n  will do11, but nn log2  will not do, and neither will 
32 )(lognn . 

When we have ε+= 2)( nnf , we get the series 

ε
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The last step holds because 4=a  and 2=b , thus giving a rate of less than 
one. 

Whenever ε+= 2)( nnf , we will get the geometrically decreasing pattern, and 
the solution will be ))(()( nfnt θ∈ . 

In general, for any a  and b , whenever )()( log abnnf +Ω∈ ε , the solution to 

Equation 15 )()( nf
b

n
atnt +�

�

�
�
�

�=  

should be 

Equation 19 ))(()( nfnt θ∈  

Unfortunately, it isn’t. There are some weird functions which are in the above 
mentioned Ω , but will not give the above result12,13. 

                                            

11 though for 0000001.2n , the asymptotics will be useful after a huge n , and it would be 
practically better to use the rectangle bound. 

12 (If you have a polynomial )(nf , these weird cases will never arise. But they could easily 

be your everyday non-polynomial function.) 

13 This happens because the Ω  just specifies a lower bound on )(nf . These particular 

)(nf s generally “cheat” by growing large fast, and then “holding still” for some time, thus 

giving a “false impression” about themselves to the θ  in the solution. (At least that’s how they 
would behave if they appeared as characters on your favorite soap…) 
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We need a stronger condition. A stronger condition that will definitely work is 
easy to derive. You just say that the rate of growth r , should be smaller than 
one. 

Now, the first level has )(nf  stuff. The second level has )/( bnaf  stuff. We 
want that there should exist a constant 1<r  such that the second level has at 
most r  times the stuff in the first level. I.e., we want an 1<r  such that 

)(nrf
b

n
af ≤�

�

�
�
�

�  

If such a constant r  was found such that the above equation will hold (for that 
same )r  for every n , then every level will have at most r times its previous 
level, thus giving a geometrically decreasing pattern. 

Seems too harsh? OK, how about we exempt the first few n s from having to 
abide by these rules? (Hey, it’s asymptotics, the first few n s don’t matter. 
Right?d) 

Finally what we get is, if )()/( nrfbnaf ≤  for some constant 1<r  for all 
sufficiently large n , the solution to 

Equation 15 )()( nf
b

n
atnt +�

�

�
�
�

�=  

is 

Equation 19 ))(()( nfnt θ∈  

The above stronger condition is called the “smoothness” criterion. 

The smoothness criterion is not required for the geometrically increasing 
case. Because the O  is considerably stricter with )(nf  than Ω  is. 

Thus, the geometrically increasing case will occur whenever 
)()( log abnOnf +−∈ ε . In this case, the solution will be asymptotically equivalent 

to the amount of stuff in the last level. The amount of stuff in the last level is 
)1(log fn ab . 

Thus, if )()( log abnOnf +−∈ ε  for some constant 0>ε , the solution to 

Equation 15 )()( nf
b

n
atnt +�

�

�
�
�

�=  

is 

Equation 20 )()( log abnnt θ∈  
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The above completes the three cases of the master method. If we recollect 
what we learned in Equation 17, Equation 19 and Equation 20, we get what is 
known as the “master theorem”: 

The solution to 

Equation 15 )()( nf
b

n
atnt +�

�

�
�
�

�=  

is 

Equation 21 
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This is the master theorem, and solving recurrences using this is the master 
method. 

This document was supposed to teach the fundamental workings of the 
master method, hopefully rendering it more easy to grasp and use than 
otherwise. Your favorite algorithmics textbook picks up where this document 
leaves. There they would prove everything correctly, take into account all the 
borderline cases, the effects added by integer-rounding and be prim and 
proper about everything. That is generally a good thing. It would be beneficial, 
at this point to read the book. 

                                            

a The inductive step goes  
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which is true for 1=a . 

b You might have even thought that we will have more than one recursion functions, like say, 
in the recurrence nntntnt ++= )4/()5/(2)( . Though the Master Method does not directly 
tackle such equations, it does provide upper and lower bounds, and provides us insight into 
how the recurrence may actually work. (In this recurrence, for example, can you see that the 
answer is going to be )()( nnt θ∈ ?) 

c The recursive algorithm is a nice “realization” for the recurrence relation, which is why we 
are using it. The analysis we develop here will stand for the recurrence relation itself, whether 
it arose from a recursive algorithm or not. 

d Not exactly right, actually.  


