
Homework 1:
Searching, Sorting and Order Statistics

udayan@codito.com Saturday 04 September 2004

1. In binary search, if instead of asking “Which half of the remaining class has
my keychain?” I had asked “Do you have my keychain? Which half of the
remaining class has my keychain?” what would be the (a) best case, (b) worst
case and (c) average time for the algorithm?

2. Suppose the elements we are searching on are arranged in a 2D square
grid, and we are searching using the question “Do you have my keychain?
Who among your (4) neighbors is closer to the keychain than you are?” What
is the best point to start the search? Why?

3. Suppose the elements we are searching on are arranged in a d -
dimensional hyper-square, and we are searching using the question “Do you
have my keychain? Who among your (d2) neighbors is closer to the keychain
than you are?” Suppose we start from a corner. What is the worst case search
time?

Assume that an element takes as much time to answer as he/she has
neighbors. Now what is the worst case time? (You may disregard edge
effects, i.e. lesser neighbors on the edges.) Suppose you know n , the number
of elements, what is the optimal dimensionality d to use?

4. Suppose each element is twice as likely to say “Yes” as the next, what is
the average time taken by sequential search?

5. Suppose a single “bubble pass” of bubble sort takes pn worst case time for
passing over n elements, whereas a “merge pass” of merge sort takes qn
worst case time to merge n elements. Find the range of n where you would
prefer bubble sort over merge sort, assuming the worst case. Suppose we
implemented merge sort as a recursive algorithm, which switches to bubble
sort “where beneficial”, what would be the running time of this sorting
algorithm? (Hint: it may not be beneficial to switch to bubble sort the moment
bubble sort is beneficial. Explain this paradox.)

6. Suppose our sorting algorithm gets repeated sorting requests, each for n
elements. Suppose the inversion characteristics of the data change slowly – if
there are u inversions in a given input set, the next input set will have

uu %10± inversions. Suppose our basic algorithm is merge sort (timed at
nqn 2log) which switches to insertion sort (timed at rnpu +) whenever low

number of inversions are expected. (a) What should the present u be for us
to switch over to insertion sort for the next input? (b) Modify the merge sort
and insertion sort algorithms to also measure the number of inversions. (c)
We implement the above scheme and find that q , p and r all increased

because of our modifications to 1q , 1p and 1r . Should we still implement this
scheme, or use just plain merge sort?

7. Merge sort is an external algorithm, in the simplest implementation taking
nn 2log extra memory. Can you make merge sort take only n memory? Only

2/n extra memory? Remember to optimize your algorithms after devising
them.

8. Suppose we have 500 numbers, all integers between 1 and 100. Devise a
stable (!) yet internal quick sort to sort them. (Assume the machine uses 16 bit
integers.) (Hint: think about how any sorting algorithm can be converted to a
stable sort.)

9. A decision tree is a binary tree, each of whose nodes has either two
children or none. Prove that in a decision tree, the deepest leaf has a sibling
leaf. Prove that among all decision trees with p leaves, the decision tree
having least average leaf depth is essentially complete1. (Hint: proof by
contradiction.) Prove that for any decision tree with p leaves, the average
leaf depth can be no better than p2log . Prove that assuming all permutations
equally likely, no comparison sorting algorithm can work faster than

)log(2 nnθ on the average.

10. A particular approximate median algorithm on n numbers works by finding
the exact medians of n sets of size n each, and then finding the exact

median of these n medians. What percentile cut is guaranteed by this
approximate median algorithm? Suppose the exact median algorithm uses
this approximate median algorithm recursively to find the pivot, analyze the
running time of the exact median algorithm.

11. Calculate (non-asymptotic) bounds on the average number of
comparisons performed by quick-order-statistic and quick-order-statistic with
median-of-5-medians pivot. I devise the following scheme for quick-order-
statistic. I first do a random pivot, and perform separation. If the size of the set
I am descending into is larger than)(nf then I perform median-of-5-medians
pivot. Design)(nf such that my worst case is)log(nnθ and the average
number of comparisons is at most three times that of quick-order-statistic.

12. Suppose I have a pivoting methodology which will guarantee at least n
elements on either side of the pivot. What is the worst case running time of
quick-sort and quick-order-statistic using this pivoting methodology? (Assume
the pivoting algorithm is extremely fast.) Devise a pivoting algorithm that will
guarantee at least n elements on either side of the pivot. Analyze quick-
order-statistic’s running time using this pivoting methodology.

1 An essentially complete binary tree is one which has leaves only on two successive levels.

