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1. In binary search, if instead of asking “Which half of the remaining class has 
my keychain?” I had asked “Do you have my keychain? Which half of the 
remaining class has my keychain?” what would be the (a) best case, (b) worst 
case and (c) average time for the algorithm? 

2. Suppose the elements we are searching on are arranged in a 2D square 
grid, and we are searching using the question “Do you have my keychain? 
Who among your (4) neighbors is closer to the keychain than you are?” What 
is the best point to start the search? Why? 

3. Suppose the elements we are searching on are arranged in a d -
dimensional hyper-square, and we are searching using the question “Do you 
have my keychain? Who among your ( d2 ) neighbors is closer to the keychain 
than you are?” Suppose we start from a corner. What is the worst case search 
time? 

Assume that an element takes as much time to answer as he/she has 
neighbors. Now what is the worst case time? (You may disregard edge 
effects, i.e. lesser neighbors on the edges.) Suppose you know n , the number 
of elements, what is the optimal dimensionality d  to use? 

4. Suppose each element is twice as likely to say “Yes” as the next, what is 
the average time taken by sequential search? 

5. Suppose a single “bubble pass” of bubble sort takes pn  worst case time for 
passing over n  elements, whereas a “merge pass” of merge sort takes qn  
worst case time to merge n  elements. Find the range of n  where you would 
prefer bubble sort over merge sort, assuming the worst case. Suppose we 
implemented merge sort as a recursive algorithm, which switches to bubble 
sort “where beneficial”, what would be the running time of this sorting 
algorithm? (Hint: it may not be beneficial to switch to bubble sort the moment 
bubble sort is beneficial. Explain this paradox.) 

6. Suppose our sorting algorithm gets repeated sorting requests, each for n  
elements. Suppose the inversion characteristics of the data change slowly – if 
there are u  inversions in a given input set, the next input set will have 

uu %10±  inversions. Suppose our basic algorithm is merge sort (timed at 
nqn 2log ) which switches to insertion sort (timed at rnpu + ) whenever low 

number of inversions are expected. (a) What should the present u  be for us 
to switch over to insertion sort for the next input? (b) Modify the merge sort 
and insertion sort algorithms to also measure the number of inversions. (c) 
We implement the above scheme and find that q , p  and r  all increased 



because of our modifications to 1q , 1p  and 1r . Should we still implement this 
scheme, or use just plain merge sort? 

7. Merge sort is an external algorithm, in the simplest implementation taking 
nn 2log  extra memory. Can you make merge sort take only n  memory? Only 

2/n  extra memory? Remember to optimize your algorithms after devising 
them. 

8. Suppose we have 500 numbers, all integers between 1 and 100. Devise a 
stable (!) yet internal quick sort to sort them. (Assume the machine uses 16 bit 
integers.) (Hint: think about how any sorting algorithm can be converted to a 
stable sort.) 

9. A decision tree is a binary tree, each of whose nodes has either two 
children or none. Prove that in a decision tree, the deepest leaf has a sibling 
leaf. Prove that among all decision trees with p  leaves, the decision tree 
having least average leaf depth is essentially complete1. (Hint: proof by 
contradiction.) Prove that for any decision tree with p  leaves, the average 
leaf depth can be no better than p2log . Prove that assuming all permutations 
equally likely, no comparison sorting algorithm can work faster than 

)log( 2 nnθ  on the average. 

10. A particular approximate median algorithm on n  numbers works by finding 
the exact medians of n  sets of size n  each, and then finding the exact 

median of these n  medians. What percentile cut is guaranteed by this 
approximate median algorithm? Suppose the exact median algorithm uses 
this approximate median algorithm recursively to find the pivot, analyze the 
running time of the exact median algorithm. 

11. Calculate (non-asymptotic) bounds on the average number of 
comparisons performed by quick-order-statistic and quick-order-statistic with 
median-of-5-medians pivot. I devise the following scheme for quick-order-
statistic. I first do a random pivot, and perform separation. If the size of the set 
I am descending into is larger than )(nf  then I perform median-of-5-medians 
pivot. Design )(nf  such that my worst case is )log( nnθ  and the average 
number of comparisons is at most three times that of quick-order-statistic. 

12. Suppose I have a pivoting methodology which will guarantee at least n  
elements on either side of the pivot. What is the worst case running time of 
quick-sort and quick-order-statistic using this pivoting methodology? (Assume 
the pivoting algorithm is extremely fast.) Devise a pivoting algorithm that will 
guarantee at least n   elements on either side of the pivot. Analyze quick-
order-statistic’s running time using this pivoting methodology. 

                                            

1 An essentially complete binary tree is one which has leaves only on two successive levels. 


