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Abstract

We know a lot about competitive or approximation ra-

tios of scheduling algorithms. This, though, cannot be

translated into direct bounds on the schedule produced by

a scheduling algorithm, because often the optimal solu-

tion is intractable. We derive a methodology to find ab-

solute bounds on the scheduling of jobs with precedence

constraints on parallel identical machines. Our bounds

hold for a large class of online and offline scheduling algo-

rithms: the “work conserving” scheduling algorithms. We

apply this methodology to prove that an important class of

synchronous dataflow graphs – the parallelized pipelines –

has very good performance characteristics when scheduled

by a work conserving scheduler. Real time guarantees and

granularity design for these dataflow graphs are discussed.

We argue that parallelized pipelines should be dynamically

scheduled on multiprocessor architectures.

Keywords: Parallel job scheduling, online scheduling

algorithms, synchronous dataflow graphs, real time sys-

tems, performance analysis of parallel systems.

1. Introduction

Scheduling of precedence constrained jobs on paral-

lel machines has been the topic of extensive study in the

past [8, 10]. Various versions of these problems occur in

the study of program parallelization, instruction scheduling

in compilers, microinstruction scheduling in superscalar ar-

chitectures and project management and other operations

research problems [7].

The competitive or approximation ratio of a scheduling

algorithm is the worst guaranteed ratio of the total time of a

schedule produced by the algorithm, to the total time of the

optimal schedule. R. Graham proved the competitive ratio

of 2 − 1/m for List Scheduling in [6], which was shown to

be optimal among online algorithms in [4].

Even though competitive analysis is important for algo-

rithm comparison, in many practical scenarios, we would

like to have absolute bounds in terms of processing time for

a scheduling algorithm. This is not possible using competi-

tive analysis because calculating the optimal schedule time

(with which the specific algorithm’s schedule is compared)

is NP hard. In Section 2 we define an important class of

schedulers called “work conserving schedulers”. We prove

absolute bounds on the schedule produced by any work con-

serving scheduler for a set of precedence constrained jobs.

In Section 3, we use this result to prove bounds on the

scheduling of an important class of Synchronous Dataflow

Graphs (SDFs). SDFs are an important abstraction for

the specification of distributed computation mechanisms.

Pipeline form SDFs, where the data flow through linearly

arranged stages, are an important class of SDFs. Each stage

can itself be divided into multiple parallel jobs. We show

that this kind of synchronous dataflow graph, with single or

multiple buffering in between the pipeline stages, is equiv-

alent to a set of jobs with precedence constraints, thus en-

abling usage of the analysis developed earlier.

In Section 4 we extend the parallelized pipeline results

so that they apply “in-process”, i.e. we give bounds for the

completion of each data item going through the pipeline,

considering the “interference” caused by earlier or subse-

quent packets/frames. In Section 5 we use the main results

of this paper to derive granularity heuristics, i.e. heuris-

tics about how much a pipeline stage should be parallelized.

Our results indicate, as discussed in Section 6, that applica-

tions having the parallelized pipeline form should be dy-

namically scheduled on multiprocessors. Section 7 men-

tions interesting unsolved problems brought up by this pa-

per. Our results are summarized in Section 8.

2. Bounds for Work Conserving Schedulers

In this section we investigate the performance of any

work conserving scheduler for scheduling any set of jobs

with arbitrary precedence constraints.
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2.1. Work Conserving Schedulers

In this paper, we shall discuss the performance of

work conserving schedulers in scheduling certain patterns

of jobs (described in Section 2.2 and Section 3). A

work conserving scheduler is a scheduler which guaran-

tees that whenever a job is ready to be scheduled, if a ma-

chine is free to process the job, the job will be scheduled.

At no point of time will it happen that a job is ready and

a machine is free, and yet the job is not scheduled on the

machine.

An important class of work conserving schedulers are

work conserving online schedulers. An online scheduler is

one which assumes no prior knowledge of the jobs. A job

becomes known to an online scheduler only when all its

precedence constraints have been satisfied. Furthermore, an

online scheduler assumes no knowledge of the running time

of the job. The running time becomes known only when the

job runs to completion. (This paradigm models the infor-

mation available to a modern OS scheduler. There are other

online paradigms, as explained in [10].) Scheduling algo-

rithms like List Scheduling [6], First Come First Served and

Priority Scheduling are work conserving online schedulers.

In a variation of online schedulers, some schedulers do not

assume knowledge of the set of jobs in advance, but do as-

sume the knowledge of the running time of a job the mo-

ment the job becomes known. Examples are Shortest Job

First and Longest Job First.

Offline schedulers are algorithms which assume com-

plete knowledge of the set of jobs, their precedence con-

straints and their running times, to schedule the whole set

of jobs. Work conserving schedulers can be online as well

as offline.

Work conserving schedulers can be both preemptive and

non-preemptive. Modern OSes use preemptive work con-

serving schedulers like Round Robin or preemptive Priority

Scheduling.

For multiprocessor scheduling problems, almost all the

algorithms devised are work conserving. Non work con-

serving methodologies have been used for more complex

problems like problems which include setup times, or prob-

lems having slightly delayed introduction of jobs, or prob-

lems where smoothing out of the service rate is important.

2.2. Scheduling Precedence Constrained Jobs

The scheduling problem we are investigating is as fol-

lows. There is a set of jobs {Ji} to be scheduled on m
identical machines. A job Ji is a serial program consuming

total time t(Ji). There are arbitrary precedence constraints

between the jobs, given by a partial order ‘≺’on the jobs.

We write Ji ≺ Jj to mean that Ji has to be finished before

Jj can be started. The jobs and the precedence constraints
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Figure 1. (a) An example partial order of jobs.

(b) An optimal schedule for it. (c) A work con-

serving schedule for it.

together form a partially ordered set (poset) J = ({J i},≺).

Figure 1(a) shows a set of jobs with precedence con-

straints depicted as a Directed Acyclic Graph (DAG). Arcs

are drawn from preceding to succeeding jobs. The transi-

tive closure of the DAG is the partial order. In the diagrams

in this section, the height of the rectangle is proportional to

the time taken by the job.

The aim of the scheduling algorithm is to minimize the

makespan. The makespan of a schedule produced by a

scheduling algorithm is the total running time of the sched-

ule, i.e. the difference between the time the earliest job

starts to the time the last job finishes. This problem is de-

noted P |prec|Cmax in the three field problem description

notation introduced by [9]. Figure 1(b) shows an optimal

schedule for the job poset in Figure 1(a).

Our aim in this section is to give an upper bound on the

makespan of a schedule produced by any work conserving

scheduler (defined in Section 2.1) in scheduling a prece-

dence constrained set of jobs. A job being “ready” in this

context means that all its precedence constraints have been

satisfied. Thus, a work conserving scheduler, for the above

problem, is a scheduler which keeps machines busy as long

as there are unprocessed jobs with all their precedence con-

straints satisfied.

It is interesting to note that if one is constrained to us-

ing non-preemptive work conserving schedules, none of the

minimum makespan schedules may be work conserving.

For example, the optimal work conserving schedule for Fig-

ure 1(a) is Figure 1(c), which has a worse makespan than the

optimal schedule shown in Figure 1(b). On the other hand,

if preemption is allowed, at least one optimal schedule is

work conserving.
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Figure 2. (a) An example set of jobs with precedence constraints. (b) A 3-processor work conserving

schedule for it. (c) Event boundaries, schedule intervals and job sections. (d) Equivalent precedence

constraints in job sections. (e) Working of Lemma 1: Q8,6 depends on something in ω2. (f) Working
of Theorem 1: chain covering partly idle intervals.

2.3. A Few Definitions

An event boundary ek in a schedule made by a sched-

uler for a set of jobs, is a time instant when at least one

job starts or stops or gets preempted on a machine. ek

is the kth event boundary in the schedule. The time pe-

riod between two consecutive event boundaries ek and ek+1

is called schedule interval ωk. Interval ωk runs for time

t(ωk) = ek+1 − ek.

A job Ji is chopped up into multiple sections by the event

boundaries. Let Qi,k be the job section of job Ji scheduled

in schedule interval ωk (if Ji was scheduled in ωk). Qi,k

runs for time t(Qi,k) = t(ωk) = ek+1 − ek.

We impose precedence constraints on the job sections

{Qi,k} equivalent to the precedence constraints on jobs

{Ji}. Qi1,k1
≺ Qi2,k2

if and only if either Ji1 ≺ Ji2 or

Ji1 = Ji2 and k1 < k2. That is, one job gets divided into

multiple job sections, keeping all the precedence constraints

with other jobs and adding precedence constraints for the

job sections within the job.

Now we define some parameters of a job poset which are

used in bounds derived in this paper. Let S be the total job

time.

S =
∑

Ji

t(Ji) =
∑

Qi,k

t(Qi,k) (1)

Also, let H be the time taken by the longest (by time)

chain of jobs. The longest chain of jobs is obviously equal

to the longest chain of job sections. Thus,

H = max
Λ is a chain

of jobs

∑

Ji∈Λ

t(Ji) = max
Λ is a chain of

job sections

∑

Qi,k∈Λ

t(Qi,k)

(2)

The longest chain is also called the “critical path” in

Operations Research terminology [7]. The critical path

can easily be identified using dynamic programming tech-

niques. The Critical Path Method (CPM) uses such a tech-

nique.

2.4. A Bound on the Makespan

Though the main result in this section is based on Gra-

ham’s competitive ratio analysis [6], we provide an inde-

pendent proof. Our reasons for doing so are – (a) Our bound

is not a competitive bound. In many cases it may provide

for sharper analysis of the schedule (e.g. the analysis in

Section 3). (b) Graham has proved the bound for what has

come to be known as List Scheduling. Though all work con-

serving non-preemptive algorithms can be thought of as List

Scheduling, proving our results through this fact is quite

cumbersome. Also, it would be hard to include preemptive

algorithms, which we do include in our analysis.

The following lemma is used to prove the central theo-

rem of this section – Theorem 1.

Lemma 1. If at least one machine is free during a schedule

interval ωk of a schedule made by a work conserving sched-

uler, then all future job sections Q•,l, l > k are dependant

on at least one job section that executes in ωk.

Proof. Take any job section Qi1,l such that l > k. Since

we are using a work conserving scheduler, Q i1,l did not

execute in ωk implies it was not ready during ωk. Thus

it became ready later, say due to the execution of Q i2,l2 ,

where Qi2,l2 ≺ Qi1,l and k ≤ l2 < l. If l2 �= k, we

can continue in the same fashion to find a Q i3,l3 (such that

Qi3,l3 ≺ Qi2,l2 and k ≤ l3 < l2) and so forth, finding
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jobs from earlier intervals till we find a job Qi•,k such that

Qi•,k ≺ . . . Qi2,l2 ≺ Qi1,l.

Theorem 1. The makespan (total running time) T of the

schedule for m identical machines produced by any work

conserving scheduler for the set of jobs {Ji} with prece-

dence constraints ≺ is bounded by

max

(

1

m
S, H

)

≤ T ≤ 1

m
S +

(

1 − 1

m

)

H (3)

Proof. The lower bound S/m ≤ T is obvious. The lower

bound H ≤ T is also obvious. For the upper bound, we

calculate the total busy time and idle time of machines

separately. All the machines together will be busy ex-

actly for a total time of S. Now consider the set of in-

tervals {ωn1
, ωn2

, . . . ωnr
}, n1 < n2 < . . . nr when at

least one machine is idle. Pick a job section Qir ,nr
. By

Lemma 1, there exists a job section Qir−1,nr−1
such that

Qir−1,nr−1
≺ Qir,nr

. Similarly, there exists a job section

Qir−2,nr−2
such that Qir−2,nr−2

≺ Qir−1,nr−1
. Continuing

this line of reasoning, we find that there is a chain of job sec-

tions Qi1,n1
≺ Qi2,n2

≺ . . . Qir,nr
“covering” the intervals

where at least one machine is idle. An upper bound on the

total time when at least one machine is idle is thus H . Since

at most m − 1 machines can be idle at any time, the upper

bound on the total idle time of machines is (m−1)H . Thus,

the total time spent by all the machines together is bounded

above by S + (m − 1)H . Dividing by m, the number of

machines, we get the required upper bound.

The above theorem can be used to give the competitive

ratio proved by Graham for List Scheduling [6] and shown

to be optimal [4] among online scheduling algorithms.

Corollary 1. The makespan of any work conserving sched-

uler has an approximation/competitive ratio of 2 − 1/m.

Proof. Obviously TOPT ≥ S/m. Also obviously TOPT ≥
H . Using Theorem 1, we get T ≤ S

m
+ (1 − 1

m
)H ≤

(2 − 1
m

)TOPT.

Thus, Theorem 1 cannot give an approximation ratio of

better than 2− 1/m. But, as we will see in Section 3, it can

be used to give better absolute (non-relative) bounds.

Though the algorithms that Theorem 1 applies to maybe

online, the analysis dictated by Theorem 1 may only be

practically carried out offline, for the knowledge of S and

H is not available online. (This applies even to competitive

analysis. The difference is – given a poset of jobs, S and

H are much simpler to compute than TOPT, and they give

better absolute bounds.)

Corollary 2. The upper bound of Theorem 1 holds after any

relaxation of precedence constraints. The upper bound of

Theorem 1 holds even after removing a few jobs or reducing

the time taken by some jobs.

Proof. After relaxing precedence constraints, S remains as

it is, and H can only become smaller. If a few jobs are re-

moved or their times are reduced then both S and H become

smaller.

Thus, Theorem 1 also gives bounds for Richard’s para-

doxes [6]. The rest of this paper applies these bounds to

particular cases.

3. Bounds for Parallelized Pipelines

In the remainder of this paper, we shall consider a par-

ticular class of SDFs called parallelized pipelines. In these

SDFs (depicted in Figure 3(a)) data flows through linearly

arranged stages. Each stage is itself divided into multiple

parallel jobs.

Such pipelines occur frequently in various multimedia,

DSP, control, network and graphics applications. Various

audio and video codecs (MPEG-II, H.264, mp3, etc.) may

be modeled in this way. Pipeline stages in a typical video

encoder are motion prediction, transform, quantization and

variable length coding. [1] talks about a nine-stage motion

estimation pipeline.

Stages
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Figure 3. (a) A parallelized pipeline. (b) Con-

cise depiction.

[1, 5] give algorithms and analysis of statically allocated

parallel pipelines, where multiple processors are assigned to

each stage. The algorithms in [3] can be used to find an of-

fline schedule which is then run repeatedly online. None of

these static scheduling methodologies are work conserving.

Dynamic scheduling methodologies, on the other hand, can
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Figure 4. Job DAG for pipeline with prece-
dence constraints.

easily be work conserving (more about this in Section 6). In

this section, we will derive bounds on the running of paral-

lelized pipelines using any work conserving scheduler.

A parallelized pipeline, (depicted in Figure 3(a)) is a

pipeline of p stages, each stage i consisting of multiple ex-

ecution nodes (compute jobs) ni,j . Successive items pass

through all the stages of the pipeline one by one. A node

ni,j takes time t(ni,j) for each item going through the

pipeline. All the nodes of a particular stage have to finish

processing before any node of the next stage can start. We

depict parallelized pipelines as shown in Figure 3(b), where

the double rectangle stands for multiple execution nodes.

Successive firings of a node (for successive data items)

are said to be for successive “epochs”. Each such firing con-

stitutes a “job” in the scheduling sense as used in Section 2.

A job Ji,j,k stands for the firing of the node ni,j for the

epoch (item number) k. t(Ji,j,k) = t(ni,j). Since a node

can be processing only one epoch at a time, we have the ob-

vious precedence constraint Ji,j,k ≺ Ji,j,k+1 for every ni,j .

Since the nodes of a particular stage have to complete work

for a particular epoch before any nodes of the next stage can

start work for the same epoch, Ji,j1,k ≺ Ji+1,j2,k.

Apart from the above precedence constraints, we add

buffering constraints: assume that there is a single buffer

between every two adjacent stages for intermediate results.

A stage has to wait for the next stage to complete process-

ing the item of the previous epoch before it starts process-

ing. Thus, Ji,j1,k ≺ Ji−1,j2,k+1. (Adding these constraints

is realistic, and these constraints will also help us prove

in-process bounds in the next section. Effects of multiple-

buffering and no buffering constraints are discussed at the

end of this section.)

We assume that the pipeline has to be scheduled for a

total of f epochs, numbered from 1 to f . This gives a job

poset which is depicted in Figure 4. (Each arrow stands for

many arcs – in fact all the possible ones.)

...

M1,f

M1,2

M1,1 M2,1

M2,2

. . .

. . .

. . . Mp,1

Mp,2

Mp,fM2,f

Figure 5. DAG with only the largest jobs.

To use the Theorem 1, we need the total job time S and

longest chain H . Suppose the time consumed in one partic-

ular epoch is C =
∑

(i,j) t(ni,j). Then the total job time

S = fC.

In a parallel group of jobs, the longest job is the only one

that matters. We formalize this intuition as follows. Let mi

be the most time consuming among the ith stage execution

nodes ni,j . Let the corresponding longest job for the k th

epoch be Mi,k. (If there are multiple longest jobs, we can

choose any one as Mi,k.)

Lemma 2. For every i, k, out of the jobs Ji,•,k, the one that

can appear in the longest chain has execution time equal to

t(Mi,k).

Proof. None of the Ji,•,k jobs depend on each other. They

have all the same successors and predecessors. Thus, in

any chain, we can always replace a Ji,j,k with Mi,k. Thus,

in the longest chain, if one of Ji,j,k appeared, it will have

execution time equal to t(Mi,k).

Thus, (without loss of generality) we only need consider

the reduced set of the jobs Mi,k, shown in Figure 5, to find

the longest chain.

Let the largest adjacent-stage-pair time be h2 =
maxi(t(mi) + t(mi+1)). Let the single-epoch pipeline la-

tency be L =
∑

i t(mi).

Lemma 3. The longest chain in the poset of jobs due to a

parallelized pipeline has length H = L + (f − 1)h2.

Proof. Let the largest adjacent-stage-pair be mu and mu+1.

Then the chain M1,1 ≺ M2,1 ≺ . . . Mu,1 ≺ Mu+1,1 ≺
Mu,2 ≺ Mu+1,2 ≺ . . . Mp,f has length L + (f − 1)h2.

This chain is depicted in Figure 6. Now we prove that no

chain can be longer.

In the reduced job set of Figure 5, M1,1 is the predeces-

sor of every job, and Mp,f is the successor of every job. The

longest chain hence has to start at M1,1 and end at Mp,f .

Furthermore, every successor of Mi,k is either Mi+1,k or

Mi−1,k+1 or one of their successors. Thus, if the longest

chain has the job Mi,k it will either have the next stage
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Figure 6. The longest chain

job Mi+1,k, or the previous stage next epoch job M i−1,k+1.

Every time the chain takes the previous stage, it jumps an

epoch. It does so exactly f − 1 times. It takes the next

stage exactly p + f − 2 times, the length of the pipeline

(p−1) plus compensation for the (f −1) reverse jumps cal-

culated above. Thus, the total number of jumps is exactly

(f − 1) + (p + f − 2) = p + 2f − 3. The total number of

jobs in the longest chain are thus p + 2f − 2.

Now, let us call the longest chain

M(1), M(2), . . .M(p+2f−2). Let the correspond-

ing sequence of execution nodes be Φ =
[m(1), m(2), . . . m(p+2f−2)]. The sequence Φ will have

repeated nodes unless f = 1. In this sequence, the first

time a node appears, we color it red. Every other instance

of the node is colored blue. The red subsequence has a total

time of L, and takes up p nodes. The blue subsequence then

has 2f − 2 nodes. Take a maximal contiguous blue-colored

run in Φ. Suppose the red node just before it is m i, of the

ith stage. The maximal contiguous blue subsequence starts

from mi−1, and goes back-and-forth one stage at a time till

it finally reaches mi. Then, this subsequence has an even

number of nodes, each subsequent node being adjacent to

the one just covered. Thus, it is made up of adjacent-stage-

pair nodes. Thus, the whole blue subsequence of 2f − 2
nodes is made up of f − 1 adjacent stage pairs. This is

obviously bounded above by (f − 1)h2. Thus the total time

of Φ is bounded above by L + (f − 1)h2.

Now that we know both S and H , application of Theo-

rem 1 gives us

Theorem 2. The makespan T of a single-buffered par-

allelized pipeline scheduled using any work conserving

scheduler is bounded by

max

(

fC

m
, L + (f − 1)h2

)

≤ T (4)

T ≤ fC

m
+

m − 1

m
(L + (f − 1)h2) (5)

Let us call the upper bound we have derived above UT (f).

UT (f) =
fC

m
+

m − 1

m
(L + (f − 1)h2) (6)

This is an affine function of f , of the form rf + c. We

call r the worst-case processing rate per epoch, and c the

worst-case setup latency.

r =
dUT

df
=

C

m
+

m − 1

m
h2 (7)

c = UT (0) =
m − 1

m
(L − h2) (8)

The pipeline does C work per epoch, thus requiring an

amortized C/m from each machine. From Equation 7, we

see that the wasted time due to bottlenecks can be at the

most m−1
m

h2. Thus, the wastage ratio, the ratio of utilized

to wasted machine time, is at worst (m − 1)(h2/C). E.g.

if the whole work in the pipeline has been divided into 200

equal-time nodes, h2/C = 1%. The overhead will then be

(m − 1)1%.

For infinitely divisible work, we can make h2 go as low

as we wish. Practically, nothing is infinitely divisible. Also,

as nodes go on becoming smaller, the practical problem of

thread-switch overhead becomes more and more relevant.

We will tackle the second problem in Section 5.

A pipeline having more than one buffer between stages

can be converted into a single-buffered pipeline for pur-

poses of applying the above analysis. For example, if there

is double buffering between two stages, we introduce a

dummy stage between these two stages, moving one buffer

to the input and one to the output of this dummy stage. This

stage has a single node taking zero time, which copies its in-

put buffer to its output (in no time - actually the second stage

itself switches pointers). We add as many dummy stages be-

tween stages as there are extra buffers between them. Thus

we convert a multiple-buffered pipeline to a single-buffered

pipeline, which we can analyze as given in Theorem 2. The

result below is an obvious special case.

Corollary 3. If there are at least two buffers between every

two stages, the bound on makespan is

T ≤ fC

m
+

m − 1

m
(L + (f − 1)h1) (9)

where h1 is the largest node. h1 = maxi t(mi).

The h1 based bound above also holds for infinite-

buffered pipelines (no buffering constraints). (A formal

proof needs to find the longest chain in the job poset without

buffering constraints.)
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4. In-Process Bounds

The bounds in Section 3 hold for the makespan of the

whole process, i.e. when the final-epoch item will be pro-

duced. They do not tell us when each intermediate-epoch

item will be produced. In this section, we provide bounds

for a continuously running pipeline. The buffering con-

straint is of prime importance here, because if it didn’t ex-

ist (infinite buffers), then some work conserving schedules

may bunch up actual item production very late in the sched-

ule.

Theorem 3. The item of epoch f will be produced by a con-

tinuously running parallelized pipeline with buffering con-

straints scheduled using any work conserving scheduler on

m machines by the time

UT (f +p−2) = (f +p−2)
C

m
+

m − 1

m
(L+(f +p−3)h2)

(10)

Proof. The epoch f item is produced when all the Jp,•,f

jobs have finished running. Before this happens, none of

the Jp−1,•,f+1 can be started, which means none of the

Jp−2,•,f+2 jobs can be started and so forth, till we find

that none of the J1,•,f+p−1 jobs can be started. Thus, the

(f + p − 1)th item doesn’t even start its travel through the

pipeline. Now, suppose we were to “cut off” the schedule

produced by any work conserving scheduler the moment the

f th epoch item was completely produced. (Any programs

that are half-completed at that moment are assumed to have

completed with reduced job times.) What we get is a work

conserving schedule of a sub-poset of the job poset up to the

epoch (f + p− 2), with some job times reduced. Applying

Corollary 2 and Theorem 2, the result is proved

The rate of item production is still at worst

r =
C

m
+

m − 1

m
h2 (11)

But because of the interference of subsequent epochs in pro-

duction of an epoch, the latency has increased to

c′ = (p − 2)
C

m
+

m − 1

m
(L + (p − 3)h2) (12)

The first epoch can be as late as c′ + r, each subsequent

epoch f will have been produced by c ′ + rf . Furthermore,

Corollary 4. If the item of epoch f1 has been produced at

time t1, the item of a subsequent epoch f2 will be produced

by the time t1 + UT (f2 − f1 + p − 2).

Proof. If we “cut” the schedule at time t1 (and keep the

subsequent events), the poset we get is a sub-poset of the

poset starting from epoch f1 + 1 (every job up to epoch f1

has definitely finished). (Programs which were half com-

pleted are assumed to have just started, and completed with

reduced job times.) The poset starting from epoch f 1 + 1 is

equivalent to the poset starting from epoch 1. Renumbering

the epochs, epoch f1 + 1 becomes epoch 1, thus making

epoch f2 now epoch f2 − f1. Applying Theorem 3 and us-

ing the same sub-poset argument used in Corollary 2, we

get the required result.

Corollary 5. If the item of epoch f1 is ready for processing

at time t1, the item of a subsequent (or same) epoch f2 will

be produced by the time t1 + UT (f2 − f1 + 2p − 3).

Proof. If J1,•,f1
is ready, it means J2,•,f1−1 have all fin-

ished, which means J3,•,f1−2 have all finished, and so on.

Continuing this chain of reasoning, we find that Jp,•,f1−p+1

have finished, meaning that the f1 − p + 1 epoch item has

been produced. Now, using Corollary 4, we get the required

result.

We learn in this section that the worst case rate of pro-

duction of an item is the same 1
m

C + m−1
m

h2 calculated

as the amortized rate in Section 3. The interference due to

former and subsequent epochs causes extra additive delays

in item production. The best case rate achievable is no bet-

ter than C/m. The difference between the best and worst

rates, fortunately does not translate into larger and larger

arbitrary delays between successive items, as shown by the

above corollaries.

If we implement a scheduling scheme where a subse-

quent epoch can never interfere with the production of the

current epoch, we will get the smaller latency of Equa-

tion 8. (This is like earliest deadline first scheduling.)

There is a simple method to implement this. A scheduler

should give progressively higher priority to higher stages of

the pipeline. Furthermore such priorities should be imple-

mented preemptively. (This does not imply that two epochs

will never be processed simultaneously. Whenever an epoch

has only one or two ready jobs, the other machines are free

to process jobs from subsequent epochs. Such jobs should

be preempted the moment the earlier epoch puts more ready

jobs in the ready queue.) Thus we have

Corollary 6. Using preemptive pipeline-progressive prior-

ity scheduling, the f th epoch will be produced by UT (f). If

an item of epoch f1 is produced at time t1, the item of epoch

f2 will be produced by time t1 + UT (f2 − f1). If an item of

epoch f1 is ready for processing at time t1, an item of epoch

f2 will be produced by t1 + UT (f2 − f1 + p − 1).

5. Switching Overhead and Optimal Grain

In the preceding sections, we have seen that a paral-

lelized pipeline produces items at the worst rate of r =
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1
m

C + m−1
m

h2. If all pipeline stages can be divided into

as many number of jobs as one wishes, then the h2 term can

be brought down to zero. Practically, as we go on increas-

ing the number of threads in an application, more time is

spent in thread switching. In this section, we analyze the

case where such thread switching (or job switching) takes

constant time.

Suppose we have a p stage pipeline, with a total compu-

tation requirement of C time per epoch. Suppose we want

to break up each stage into jobs, each taking time t (and an

adjustment job). We call t the grain of parallelism. Suppose

the job switching time is a constant a. What is the optimal

grain t?
To analyze this situation, it is enough that we consider

the setup time a to be included in the processing time of

each job. The pipeline is divided into approximately C/t+p
jobs. Adding the switching overhead of all of these gives us

an adjusted compute requirement of C ′ = C + a(C/t + p)
per epoch. The worst stage-pair time is h2 = 2(a+t). From

Equation 7, we get that the processing rate is

r =
1

m

(

C + a

(

C

t
+ p

))

+
m − 1

m
2(a + t) (13)

As t increases, the linear “bottleneck” term increases.

As t decreases the reciprocal term in the total compute time

increases. To find the optimal t, we differentiate the above

expression with respect to t and equate to zero.

topt =

√

aC

2(m − 1)
(14)

(If instead of using the expression for r in the deriva-

tion above, we had used one of the expressions for T , the

makespan, our solution would have depended on the num-

ber of epochs f , and would have tended in the limit to the

above solution as the number of epochs increased.)

Substituting the value of topt in Equation 13, we get that

the maximum guaranteed processing rate is

ropt =
C

m
+

ap

m
+

m − 1

m
(4topt + 2a) (15)

Here C is the processing time. (ap+(m− 1)2topt) time

is wasted due to switching overhead. (m − 1)(2topt + 2a)
time is wasted due to underutilization of the machines. The

wastage ratio (the ratio of wasted to utilized time over all

the machines) is (in the worst case)

2
√

2

√

a(m − 1)

C
+ 2

a(m − 1)

C
+

ap

C
(16)

When C is considerably larger than a, and p and

m are not too huge, the wastage ratio is close to

2
√

2
√

a(m − 1)/C.

It is important to note that the results in this section may

be only used as design heuristics. The topt derived is op-

timal under an arbitrary assumption that all pipeline stages

have the same granularity. There is no reason for this as-

sumption beyond calculational simplicity. If the machine

utilization achieved is not good enough, better granularity

assignment for the same problem could be done, by assum-

ing that every stage can have its own granularity, and solv-

ing the ensuing computational problem.

For example, even if we just let the odd and even num-

bered stages have different granularities to and te, we get

h2 = 2a + to + te. Repeating the same steps as above,

we get the optima toopt =
√

aCo/(m − 1) and teopt =
√

aCe/(m − 1), where Co and Ce are the processing re-

quirements per epoch of all the odd and all the even num-

bered stages of the pipeline. This gives a wastage ra-

tio of approximately 2((
√

Co +
√

Ce)/
√

C)
√

a(m − 1)/C

which can be up to
√

2 times better than the wastage ratio

with equal granularity throughout the pipeline.

6. On Scheduling Parallelized Pipelines

The parallelized pipelines as described in Section 3,

can model various applications in the multimedia, graph-

ics processing, DSP, control and network processing do-

main. Many multiprocessor architectures are available for

these tasks like Cradle, Broadcom’s CALISTO and Intel’s

IXP and IXS series. We claim that in many instances,

such pipelines should be implemented using dynamic on-

line (work conserving) scheduling. The benefits of doing so

are described below.

The computational throughput achieved is high, and

would be almost optimal in many cases, as described in

Sections 3 and 4. There are two static scheduling method-

ologies generally in use. One, statically assigning pipeline

stages to processors (MISD processing) In this methodol-

ogy, all processors except the slowest waste time, since for

most applications all stages of the pipeline do not have equal

computational requirements. (A variation of this methodol-

ogy, Pipelined Processor Farms [5] assigns many processors

to a single stage. This methodology will become optimal

only for a large number of processors, and only if the total

computation warrants such a heavy multiprocessor.) Using

dynamic scheduling, a heavier stage will be dynamically as-

signed more processors; even a very few processors can be

near-optimally shared.

The other static scheduling methodology is to make all

processors work on a single stage for a single epoch (SIMD

processing). For optimal utilization, each stage should have

a multiple of m jobs to process. This is impossible to

achieve, and also inflexible. Also, light stages may not have

enough work to be divided into m jobs. Using dynamic

scheduling, if a stage does not take enough processors, the
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idle processors will be assigned to process other stages.

The epoch jitter is bounded, as shown in Section 4. Of

course these bounds are not as low as static scheduling. But

for many data stream applications (those that do not require

extreme real time response), these bounds are good enough.

The jitter, being bounded, may be smoothed out using a jit-

ter buffer. Specific scheduling methodologies having very

low jitter may be designed (as in Corollary 6.)

Dynamic scheduling is more resilient to variations in job

times. For example, sections of a scene may be more com-

plex than other sections, causing some blocks to take more

processing time than others. As another example, for a

voice codec application, not everybody would be talking at

the same time. Static scheduling cannot benefit much from

such stochastic knowledge about an application. Dynamic

scheduling “adjusts” for such variations. (We need to derive

stochastic bounds on S and H .)

7. Unsolved Problems and Future Directions

This paper opens up many problems, which we list in

this section.

The proof of Theorem 1 assumes that for all instants that

a machine is free, m−1 machines can be free. This need not

always be the case. Can we give better bounds for particular

job posets? For particular algorithms? (Longest Job First

seems beneficial in this context.)

In many applications we have stochastic knowledge

about the running time of jobs. What can we derive about

S and H under such circumstances?

Can we extend these results to general synchronous data

flow graphs?

Given computational requirements of each stage of the

pipeline, what is the optimal granularity assignment?

We have explained the use of preemptive pipeline-

progressive priority scheduling (Section 4) for achieving

lower jitter. In many cases, non preemptive scheduling can

be done with a lower overhead than preemptive schedul-

ing. Given the importance of switching overhead (Sec-

tion 5), what bounds on latency can be achieved with non-

preemptive pipeline-progressive priority scheduling?

The in-process bounds of Section 4 have a lot of obvious

overestimation. Can sharper bounds be given?

A practical parallelized pipeline is usually not free run-

ning, but has specific release and removal times for epochs.

E.g. a frame will come in from the camera only once every

1/30th of a second. How are the in-process bounds affected

by these timing constraints? (One would expect that as long

as the processing requirement remains below 1
m

C+m−1
m

h2,

and sufficient latency between input and output is allowed, a

work conserving algorithm should be good enough to guar-

antee performance.)

8. Summary of Results

We showed that any work conserving algorithm takes

time close to the “packed optimal” plus the critical path time

for scheduling a set of jobs with precedence constraints. We

showed that for parallelized pipelines, the rate of processing

achieved is close to the “packed optimal” plus a bottleneck

term which depends on the slowest pair of adjacent stage

jobs. We also showed worst case timing latencies between

epochs, which gives worst case real-time guarantees on the

production of a certain item. We used these results to derive

heuristics for granularity design of a parallelized pipeline.

Lastly we gave justifications for dynamic online scheduling

of parallelized pipelines. 1
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